Integrating microbial community properties, biomass and necromass to predict cropland soil organic carbon

被引:59
作者
Wang, Chao [1 ,2 ]
Wang, Xu [1 ]
Zhang, Yang [1 ]
Morrissey, Ember [3 ]
Liu, Yue [1 ]
Sun, Lifei [1 ]
Qu, Lingrui [1 ]
Sang, Changpeng [1 ]
Zhang, Hong [1 ]
Li, Guochen [1 ]
Zhang, Lili [1 ]
Fang, Yunting [1 ]
机构
[1] Chinese Acad Sci, Inst Appl Ecol, CAS Key Lab Forest Ecol & Management, Shenyang 110016, Peoples R China
[2] Key Lab Terr Ecosyst Carbon Neutral, Shenyang 110016, Liaoning, Peoples R China
[3] West Virginia Univ, Div Plant & Soil Sci, Morgantown, WV 26506 USA
来源
ISME COMMUNICATIONS | 2023年 / 3卷 / 01期
关键词
PLANT INPUTS; MATTER; DECOMPOSITION; FUNGAL; LITTER; SEQUESTRATION; EXTRACTION; STORAGE;
D O I
10.1038/s43705-023-00300-1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Manipulating microorganisms to increase soil organic carbon (SOC) in croplands remains a challenge. Soil microbes are important drivers of SOC sequestration, especially via their necromass accumulation. However, microbial parameters are rarely used to predict cropland SOC stocks, possibly due to uncertainties regarding the relationships between microbial carbon pools, community properties and SOC. Herein we evaluated the microbial community properties (diversity and network complexity), microbial carbon pools (biomass and necromass carbon) and SOC in 468 cropland soils across northeast China. We found that not only microbial necromass carbon but also microbial community properties (diversity and network complexity) and biomass carbon were correlated with SOC. Microbial biomass carbon and diversity played more important role in predicting SOC for maize, while microbial network complexity was more important for rice. Models to predict SOC performed better when the microbial community and microbial carbon pools were included simultaneously. Taken together our results suggest that microbial carbon pools and community properties influence SOC accumulation in croplands, and management practices that improve these microbial parameters may increase cropland SOC levels.
引用
收藏
页数:10
相关论文
共 73 条
[1]  
Barton K., 2023, Multi-model inference
[2]   Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes [J].
Bastida, Felipe ;
Eldridge, David J. ;
Garcia, Carlos ;
Kenny Png, G. ;
Bardgett, Richard D. ;
Delgado-Baquerizo, Manuel .
ISME JOURNAL, 2021, 15 (07) :2081-2091
[3]   Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: A meta-analysis [J].
Berhane, Medhn ;
Xu, Miao ;
Liang, Zhiying ;
Shi, Jianglan ;
Wei, Gehong ;
Tian, Xiaohong .
GLOBAL CHANGE BIOLOGY, 2020, 26 (04) :2686-2701
[4]   Soil carbon sequestration-An interplay between soil microbial community and soil organic matter dynamics [J].
Bhattacharyya, Siddhartha Shankar ;
Ros, Gerard H. ;
Furtak, Karolina ;
Iqbal, Hafiz M. N. ;
Parra-Saldivar, Roberto .
SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 815
[5]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[6]   The role of soil carbon in natural climate solutions [J].
Bossio, D. A. ;
Cook-Patton, S. C. ;
Ellis, P. W. ;
Fargione, J. ;
Sanderman, J. ;
Smith, P. ;
Wood, S. ;
Zomer, R. J. ;
von Unger, M. ;
Emmer, I. M. ;
Griscom, B. W. .
NATURE SUSTAINABILITY, 2020, 3 (05) :391-398
[7]   Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth [J].
Bradford, Mark A. ;
Keiser, Ashley D. ;
Davies, Christian A. ;
Mersmann, Calley A. ;
Strickland, Michael S. .
BIOGEOCHEMISTRY, 2013, 113 (1-3) :271-281
[8]   Formation of necromass-derived soil organic carbon determined by microbial death pathways [J].
Camenzind, Tessa ;
Mason-Jones, Kyle ;
Mansour, India ;
Rillig, Matthias C. ;
Lehmann, Johannes .
NATURE GEOSCIENCE, 2023, 16 (02) :115-122
[9]   Contrasting pathways of carbon sequestration in paddy and upland soils [J].
Chen, Xiangbi ;
Hu, Yajun ;
Xia, Yinhang ;
Zheng, Shengmeng ;
Ma, Chong ;
Rui, Yichao ;
He, Hongbo ;
Huang, Daoyou ;
Zhang, Zhenhua ;
Ge, Tida ;
Wu, Jinshui ;
Guggenberger, Georg ;
Kuzyakov, Yakov ;
Su, Yirong .
GLOBAL CHANGE BIOLOGY, 2021, 27 (11) :2478-2490
[10]  
Cotrufo MF, 2015, NAT GEOSCI, V8, P776, DOI [10.1038/ngeo2520, 10.1038/NGEO2520]