Online parameter estimation for the McKean-Vlasov stochastic differential equation

被引:9
作者
Sharrock, Louis [1 ,2 ]
Kantas, Nikolas [3 ]
Parpas, Panos [3 ]
Pavliotis, Grigorios A. [3 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YR, England
[2] Univ Bristol, Sch Math, Bristol BS8 1UG, England
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
McKean-Vlasov equation; Maximum likelihood; Parameter estimation; Stochastic gradient descent; MAXIMUM-LIKELIHOOD-ESTIMATION; DISTRIBUTION DEPENDENT SDES; SELF-STABILIZING PROCESSES; GRANULAR MEDIA EQUATIONS; DIFFUSION-APPROXIMATION; POISSON EQUATION; NEURAL-NETWORKS; SMALL VARIANCE; CONVERGENCE; MODEL;
D O I
10.1016/j.spa.2023.05.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyse the problem of online parameter estimation for a stochastic McKean-Vlasov equation, and the associated system of weakly interacting particles. We propose an online estimator for the parameters of the McKean-Vlasov SDE, or the interacting particle system, which is based on a continuous-time stochastic gradient ascent scheme with respect to the asymptotic log-likelihood of the interacting particle system. We characterise the asymptotic behaviour of this estimator in the limit as t & RARR; oo, and also in the joint limit as t & RARR; oo and N & RARR; oo. In these two cases, we obtain almost sure or L1 convergence to the stationary points of a limiting contrast function, under suitable conditions which guarantee ergodicity and uniform-in-time propagation of chaos. We also establish, under the additional condition of global strong concavity, L2 convergence to the unique maximiser of the asymptotic log-likelihood of the McKean-Vlasov SDE, with an asymptotic convergence rate which depends on the learning rate, the number of observations, and the dimension of the non-linear process. Our theoretical results are supported by two numerical examples, a linear mean field model and a stochastic opinion dynamics model.& COPY; 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:481 / 546
页数:66
相关论文
共 50 条
  • [41] Existence and Uniqueness for McKean-Vlasov Equations with Singular Interactions
    Zhao, Guohuan
    [J]. POTENTIAL ANALYSIS, 2025, 62 (03) : 625 - 653
  • [42] Averaging Principle for McKean-Vlasov SDEs Driven by FBMs
    Zhang, Tongqi
    Xu, Yong
    Feng, Lifang
    Pei, Bin
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (01)
  • [43] Diffusion approximation for multi-scale McKean-Vlasov SDEs through different methods
    Hong, Wei
    Li, Shihu
    Sun, Xiaobin
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 414 : 405 - 454
  • [44] Wong-Zakai approximations and support theorems for stochastic McKean-Vlasov equations
    Xu, Jie
    Gong, Jiayin
    [J]. FORUM MATHEMATICUM, 2022, 34 (06) : 1411 - 1432
  • [45] Coupled McKean-Vlasov diffusions: wellposedness, propagation of chaos and invariant measures
    Duong, Manh Hong
    Tugaut, Julian
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2020, 92 (06) : 900 - 943
  • [46] Phase transitions of McKean-Vlasov processes in double-wells landscape
    Tugaut, Julian
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2014, 86 (02): : 257 - 284
  • [47] Sticky nonlinear SDEs and convergence of McKean-Vlasov equations without confinement
    Durmus, Alain
    Eberle, Andreas
    Guillin, Arnaud
    Schuh, Katharina
    [J]. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2024, 12 (03): : 1855 - 1906
  • [48] MULTIPLE-DELAY STOCHASTIC MCKEAN-VLASOV EQUATIONS WITH HOLDER DIFFUSION COEFFICIENTS AND
    Gao, S. H. U. A. I. B. I. N.
    Liu, Z. H. U. O. Q., I
    Hu, J. U. N. H. A. O.
    Guo, Q. I. A. N.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (05): : 849 - 879
  • [49] Abstract second-order damped McKean-Vlasov stochastic evolution equations
    Mahmudov, NI
    McKibben, MA
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2006, 24 (02) : 303 - 328
  • [50] Derivative estimates on distributions of McKean-Vlasov SDEs
    Huang, Xing
    Wang, Feng-Yu
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26