Online parameter estimation for the McKean-Vlasov stochastic differential equation

被引:9
作者
Sharrock, Louis [1 ,2 ]
Kantas, Nikolas [3 ]
Parpas, Panos [3 ]
Pavliotis, Grigorios A. [3 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YR, England
[2] Univ Bristol, Sch Math, Bristol BS8 1UG, England
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
McKean-Vlasov equation; Maximum likelihood; Parameter estimation; Stochastic gradient descent; MAXIMUM-LIKELIHOOD-ESTIMATION; DISTRIBUTION DEPENDENT SDES; SELF-STABILIZING PROCESSES; GRANULAR MEDIA EQUATIONS; DIFFUSION-APPROXIMATION; POISSON EQUATION; NEURAL-NETWORKS; SMALL VARIANCE; CONVERGENCE; MODEL;
D O I
10.1016/j.spa.2023.05.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyse the problem of online parameter estimation for a stochastic McKean-Vlasov equation, and the associated system of weakly interacting particles. We propose an online estimator for the parameters of the McKean-Vlasov SDE, or the interacting particle system, which is based on a continuous-time stochastic gradient ascent scheme with respect to the asymptotic log-likelihood of the interacting particle system. We characterise the asymptotic behaviour of this estimator in the limit as t & RARR; oo, and also in the joint limit as t & RARR; oo and N & RARR; oo. In these two cases, we obtain almost sure or L1 convergence to the stationary points of a limiting contrast function, under suitable conditions which guarantee ergodicity and uniform-in-time propagation of chaos. We also establish, under the additional condition of global strong concavity, L2 convergence to the unique maximiser of the asymptotic log-likelihood of the McKean-Vlasov SDE, with an asymptotic convergence rate which depends on the learning rate, the number of observations, and the dimension of the non-linear process. Our theoretical results are supported by two numerical examples, a linear mean field model and a stochastic opinion dynamics model.& COPY; 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:481 / 546
页数:66
相关论文
共 50 条
  • [31] Large Deviation Principle for McKean-Vlasov Quasilinear Stochastic Evolution Equations
    Hong, Wei
    Li, Shihu
    Liu, Wei
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1) : S1119 - S1147
  • [32] McKean-Vlasov Limit in Portfolio Optimization
    Borkar, V. S.
    Kumar, K. Suresh
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2010, 28 (05) : 884 - 906
  • [33] Small noise asymptotics of multi-scale McKean-Vlasov stochastic dynamical systems
    Gao, Jingyue
    Hong, Wei
    Liu, Wei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 364 : 521 - 575
  • [34] THE TAMED EULER-MARUYAMA APPROXIMATION OF MCKEAN-VLASOV STOCHASTIC DIFFERENTIAL EQUATIONS AND ASYMPTOTIC ERROR ANALYSIS
    Liu, H. U. A. G. U., I
    Wu, F. U. K. E.
    Wu, M. I. N. Y. U.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (05): : 952 - 978
  • [35] ASYMPTOTIC BISMUT FORMULA FOR LIONS DERIVATIVE OF MCKEAN-VLASOV NEUTRAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH INFINITE MEMORY
    Wang, Lixi
    Li, Junping
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025, : 1118 - 1139
  • [36] Importance sampling for McKean-Vlasov SDEs
    dos Reis, Goncalo
    Smith, Greig
    Tankov, Peter
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 453
  • [37] Infinite-dimensional regularization of McKean-Vlasov equation with a Wasserstein diffusion
    Marx, Victor
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04): : 2315 - 2353
  • [38] MCKEAN-VLASOV SDE AND SPDE WITH LOCALLY MONOTONE COEFFICIENTS
    Hong, Wei
    Hu, Shanshan
    Liu, Wei
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (02) : 2136 - 2189
  • [39] A cubature based algorithm to solve decoupled McKean-Vlasov forward-backward stochastic differential equations
    de Raynal, P. E. Chaudru
    Trillos, C. A. Garcia
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (06) : 2206 - 2255
  • [40] PHASE TRANSITION FOR THE MCKEAN-VLASOV EQUATION OF WEAKLY COUPLED HODGKIN-HUXLEY OSCILLATORS
    Vukadinovic, Jesenko
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, : 4113 - 4138