Online parameter estimation for the McKean-Vlasov stochastic differential equation

被引:9
|
作者
Sharrock, Louis [1 ,2 ]
Kantas, Nikolas [3 ]
Parpas, Panos [3 ]
Pavliotis, Grigorios A. [3 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YR, England
[2] Univ Bristol, Sch Math, Bristol BS8 1UG, England
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
McKean-Vlasov equation; Maximum likelihood; Parameter estimation; Stochastic gradient descent; MAXIMUM-LIKELIHOOD-ESTIMATION; DISTRIBUTION DEPENDENT SDES; SELF-STABILIZING PROCESSES; GRANULAR MEDIA EQUATIONS; DIFFUSION-APPROXIMATION; POISSON EQUATION; NEURAL-NETWORKS; SMALL VARIANCE; CONVERGENCE; MODEL;
D O I
10.1016/j.spa.2023.05.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyse the problem of online parameter estimation for a stochastic McKean-Vlasov equation, and the associated system of weakly interacting particles. We propose an online estimator for the parameters of the McKean-Vlasov SDE, or the interacting particle system, which is based on a continuous-time stochastic gradient ascent scheme with respect to the asymptotic log-likelihood of the interacting particle system. We characterise the asymptotic behaviour of this estimator in the limit as t & RARR; oo, and also in the joint limit as t & RARR; oo and N & RARR; oo. In these two cases, we obtain almost sure or L1 convergence to the stationary points of a limiting contrast function, under suitable conditions which guarantee ergodicity and uniform-in-time propagation of chaos. We also establish, under the additional condition of global strong concavity, L2 convergence to the unique maximiser of the asymptotic log-likelihood of the McKean-Vlasov SDE, with an asymptotic convergence rate which depends on the learning rate, the number of observations, and the dimension of the non-linear process. Our theoretical results are supported by two numerical examples, a linear mean field model and a stochastic opinion dynamics model.& COPY; 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:481 / 546
页数:66
相关论文
共 50 条
  • [11] Multilevel Picard approximations for McKean-Vlasov stochastic differential equations
    Hutzenthaler, Martin
    Kruse, Thomas
    Nguyen, Tuan Anh
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (01)
  • [12] The McKean-Vlasov Equation in Finite Volume
    Chayes, L.
    Panferov, V.
    JOURNAL OF STATISTICAL PHYSICS, 2010, 138 (1-3) : 351 - 380
  • [13] Semiparametric estimation of McKean-Vlasov SDEs
    Belomestny, Denis
    Pilipauskaite, Vytaute
    Podolskij, Mark
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (01): : 79 - 96
  • [14] Stability, Uniqueness and Existence of Solutions to McKean-Vlasov Stochastic Differential Equations in Arbitrary Moments
    Kalinin, Alexander
    Meyer-Brandis, Thilo
    Proske, Frank
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (04) : 2941 - 2989
  • [15] Polynomial rates via deconvolution for nonparametric estimation in McKean-Vlasov SDEs
    Amorino, Chiara
    Belomestny, Denis
    Pilipauskaite, Vytaute
    Podolskij, Mark
    Zhou, Shi-Yuan
    PROBABILITY THEORY AND RELATED FIELDS, 2024,
  • [16] Strong convergence order for slow-fast McKean-Vlasov stochastic differential equations
    Rockner, Michael
    Sun, Xiaobin
    Xie, Yingchao
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (01): : 547 - 576
  • [17] Long time behavior of stochastic Mckean-Vlasov equations
    Lv, Guangying
    Shan, Yeqing
    APPLIED MATHEMATICS LETTERS, 2022, 128
  • [18] Limit theorems of invariant measures for multivalued McKean-Vlasov stochastic differential equations
    Qiao, Huijie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (02)
  • [19] Asymptotic Behaviors of Small Perturbation for Multivalued Mckean-Vlasov Stochastic Differential Equations
    Fang, Kun
    Liu, Wei
    Qiao, Huijie
    Zhu, Fengwu
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 88 (01):
  • [20] Rate of homogenization for fully-coupled McKean-Vlasov SDEs
    Bezemek, Zachary William
    Spiliopoulos, Konstantinos
    STOCHASTICS AND DYNAMICS, 2023, 23 (02)