Online parameter estimation for the McKean-Vlasov stochastic differential equation

被引:14
作者
Sharrock, Louis [1 ,2 ]
Kantas, Nikolas [3 ]
Parpas, Panos [3 ]
Pavliotis, Grigorios A. [3 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YR, England
[2] Univ Bristol, Sch Math, Bristol BS8 1UG, England
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
McKean-Vlasov equation; Maximum likelihood; Parameter estimation; Stochastic gradient descent; MAXIMUM-LIKELIHOOD-ESTIMATION; DISTRIBUTION DEPENDENT SDES; SELF-STABILIZING PROCESSES; GRANULAR MEDIA EQUATIONS; DIFFUSION-APPROXIMATION; POISSON EQUATION; NEURAL-NETWORKS; SMALL VARIANCE; CONVERGENCE; MODEL;
D O I
10.1016/j.spa.2023.05.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyse the problem of online parameter estimation for a stochastic McKean-Vlasov equation, and the associated system of weakly interacting particles. We propose an online estimator for the parameters of the McKean-Vlasov SDE, or the interacting particle system, which is based on a continuous-time stochastic gradient ascent scheme with respect to the asymptotic log-likelihood of the interacting particle system. We characterise the asymptotic behaviour of this estimator in the limit as t & RARR; oo, and also in the joint limit as t & RARR; oo and N & RARR; oo. In these two cases, we obtain almost sure or L1 convergence to the stationary points of a limiting contrast function, under suitable conditions which guarantee ergodicity and uniform-in-time propagation of chaos. We also establish, under the additional condition of global strong concavity, L2 convergence to the unique maximiser of the asymptotic log-likelihood of the McKean-Vlasov SDE, with an asymptotic convergence rate which depends on the learning rate, the number of observations, and the dimension of the non-linear process. Our theoretical results are supported by two numerical examples, a linear mean field model and a stochastic opinion dynamics model.& COPY; 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:481 / 546
页数:66
相关论文
共 107 条
[1]  
Amorino C, 2023, Arxiv, DOI arXiv:2208.11965
[2]  
[Anonymous], 2001, Statistics of Random Processes, DOI [DOI 10.1007/978-3-662-13043-8, 10.1007/978-3-662-13043-8]
[3]   Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons [J].
Baladron, Javier ;
Fasoli, Diego ;
Faugeras, Olivier ;
Touboul, Jonathan .
JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2012, 2 (01) :1-50
[4]  
Ball F., 2020, STOCHASTIC EPIDEMIC, P123
[5]   On the long-time behaviour of McKean-Vlasov paths [J].
Bashiri, K. .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 :1-14
[6]   Strong solutions of mean-field stochastic differential equations with irregular drift [J].
Bauer, Martin ;
Meyer-Brandis, Thilo ;
Proske, Frank .
ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
[7]   Nonlinear self-stabilizing processes - I Existence, invariant probability, propagation of chaos [J].
Benachour, S ;
Roynette, B ;
Talay, D ;
Vallois, P .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 75 (02) :173-201
[8]  
Benedetto D, 1997, ESAIM-MATH MODEL NUM, V31, P615
[9]   Gradient convergence in gradient methods with errors [J].
Bertsekas, DP ;
Tsitsiklis, JN .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (03) :627-642
[10]   Online drift estimation for jump-diffusion processes [J].
Bhudisaksang, Theerawat ;
Cartea, Alvaro .
BERNOULLI, 2021, 27 (04) :2494-2518