Online parameter estimation for the McKean-Vlasov stochastic differential equation

被引:9
|
作者
Sharrock, Louis [1 ,2 ]
Kantas, Nikolas [3 ]
Parpas, Panos [3 ]
Pavliotis, Grigorios A. [3 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YR, England
[2] Univ Bristol, Sch Math, Bristol BS8 1UG, England
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
McKean-Vlasov equation; Maximum likelihood; Parameter estimation; Stochastic gradient descent; MAXIMUM-LIKELIHOOD-ESTIMATION; DISTRIBUTION DEPENDENT SDES; SELF-STABILIZING PROCESSES; GRANULAR MEDIA EQUATIONS; DIFFUSION-APPROXIMATION; POISSON EQUATION; NEURAL-NETWORKS; SMALL VARIANCE; CONVERGENCE; MODEL;
D O I
10.1016/j.spa.2023.05.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyse the problem of online parameter estimation for a stochastic McKean-Vlasov equation, and the associated system of weakly interacting particles. We propose an online estimator for the parameters of the McKean-Vlasov SDE, or the interacting particle system, which is based on a continuous-time stochastic gradient ascent scheme with respect to the asymptotic log-likelihood of the interacting particle system. We characterise the asymptotic behaviour of this estimator in the limit as t & RARR; oo, and also in the joint limit as t & RARR; oo and N & RARR; oo. In these two cases, we obtain almost sure or L1 convergence to the stationary points of a limiting contrast function, under suitable conditions which guarantee ergodicity and uniform-in-time propagation of chaos. We also establish, under the additional condition of global strong concavity, L2 convergence to the unique maximiser of the asymptotic log-likelihood of the McKean-Vlasov SDE, with an asymptotic convergence rate which depends on the learning rate, the number of observations, and the dimension of the non-linear process. Our theoretical results are supported by two numerical examples, a linear mean field model and a stochastic opinion dynamics model.& COPY; 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:481 / 546
页数:66
相关论文
共 50 条
  • [1] Parameter Estimation of Path-Dependent McKean-Vlasov Stochastic Differential Equations
    Liu, Meiqi
    Qiao, Huijie
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (03) : 876 - 886
  • [2] Parameter Estimation of Path-Dependent McKean-Vlasov Stochastic Differential Equations
    Meiqi Liu
    Huijie Qiao
    Acta Mathematica Scientia, 2022, 42 : 876 - 886
  • [3] Maximum likelihood estimation of McKean-Vlasov stochastic differential equation and its application
    Wen, Jianghui
    Wang, Xiangjun
    Mao, Shuhua
    Xiao, Xinping
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 : 237 - 246
  • [4] Inference for ergodic McKean-Vlasov stochastic differential equations with polynomial interactions
    Genon-Catalot, Valentine
    Laredo, Catherine
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (04): : 2668 - 2693
  • [5] Parametric inference for ergodic McKean-Vlasov stochastic differential equations
    Genon-Catalot, Valentine
    Laredo, Catherine
    BERNOULLI, 2024, 30 (03) : 1971 - 1997
  • [6] STABILITY ANALYSIS FOR STOCHASTIC MCKEAN-VLASOV EQUATION
    Shi, C.
    Wang, W.
    ANZIAM JOURNAL, 2024,
  • [7] DYNAMICS OF THE MCKEAN-VLASOV EQUATION
    CHAN, T
    ANNALS OF PROBABILITY, 1994, 22 (01): : 431 - 441
  • [8] Maximum likelihood estimation for small noise multi-scale McKean-Vlasov stochastic differential equations
    Xu, Jie
    Zheng, Qiao
    Mu, Jianyong
    BERNOULLI, 2025, 31 (01) : 783 - 815
  • [9] POISSON EQUATION ON WASSERSTEIN SPACE AND DIFFUSION APPROXIMATIONS FOR MULTISCALE MCKEAN-VLASOV EQUATION
    Li, Yun
    Wu, Fuke
    Xie, Longjie
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (02) : 1495 - 1524
  • [10] LEAST SQUARES ESTIMATION FOR DELAY MCKEAN-VLASOV STOCHASTIC DIFFERENTIAL EQUATIONS AND INTERACTING PARTICLE SYSTEMS
    Zhu, Min
    Hu, Yanyan
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (01) : 265 - 296