Pansharpening With Spatial Hessian Non-Convex Sparse and Spectral Gradient Low Rank Priors

被引:4
作者
Liu, Pengfei [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing 210023, Peoples R China
[2] Jiangsu Key Lab Big Data Secur & Intelligent Proc, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Pansharpening; Laplace equations; Degradation; Spatial resolution; Satellites; Image fusion; Analytical models; spatial Hessian; hyper-Laplacian non-convex sparse prior; spectral gradient low rank; REMOTE-SENSING IMAGES; VARIATIONAL MODEL; LANDSAT TM; FUSION; MULTIRESOLUTION; REGRESSION; ALGORITHM; MS;
D O I
10.1109/TIP.2023.3263103
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To get the high resolution multi-spectral (HRMS) images by the fusion of low resolution multi-spectral (LRMS) and panchromatic (PAN) images, an effectively pansharpening model with spatial Hessian non-convex sparse and spectral gradient low rank priors (PSHNSSGLR) is proposed in this paper. In particularly, from the statistical aspect of view, the spatial Hessian hyper-Laplacian non-convex sparse prior is developed to model the spatial Hessian consistency between HRMS and PAN. More importantly, it is recently the first work for pansharpening modeling with the spatial Hessian hyper-Laplacian non-convex sparse prior. Meanwhile, the spectral gradient low rank prior on HRMS is further developed for spectral feature preservation. Then, the alternating direction method of multipliers (ADMM) approach is applied for optimizing the proposed PSHNSSGLR model. Afterwards, many fusion experiments demonstrate the capability and superiority of PSHNSSGLR.
引用
收藏
页码:2120 / 2131
页数:12
相关论文
共 50 条
[41]   Convex and non-convex regularization methods for spatial point processes intensity estimation [J].
Choiruddin, Achmad ;
Coeurjolly, Jean-Francois ;
Letue, Frederique .
ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01) :1210-1255
[42]   Non-convex block-sparse compressed sensing with redundant dictionaries [J].
Liu, Chunyan ;
Wang, Jianjun ;
Wang, Wendong ;
Wang, Zhi .
IET SIGNAL PROCESSING, 2017, 11 (02) :171-180
[43]   Multiple-snapshot Compressive Beamforming with Non-convex Sparse Constraints [J].
Ding Feilong ;
Chi Cheng ;
Li Yu ;
Huang Haining .
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (06) :2071-2079
[44]   Convergent Working Set Algorithm for Lasso with Non-Convex Sparse Regularizers [J].
Rakotomamonjy, Alain ;
Flamary, Remi ;
Gasso, Gilles ;
Salmon, Joseph .
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
[45]   Inexact Proximal Gradient Methods for Non-Convex and Non-Smooth Optimization [J].
Gu, Bin ;
Wang, De ;
Huo, Zhouyuan ;
Huang, Heng .
THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, :3093-3100
[46]   Single-Shot Phase Retrieval Via Gradient-Sparse Non-Convex Regularization Integrating Physical Constraints [J].
Chen, Xuesong ;
Li, Fang .
JOURNAL OF SCIENTIFIC COMPUTING, 2025, 102 (03)
[47]   Bearing Fault Diagnosis using Hyper-Laplacian Priors and Non-Convex Optimization [J].
Zhao, Zhibin ;
An, Botao ;
Wang, Shibin ;
Qiao, Baijie ;
Sun, Chuang ;
Chen, Xuefeng .
2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, :1239-1244
[48]   Low-Rank and Spectral-Spatial Sparse Unmixing for Hyperspectral Remote Sensing Imagery [J].
Li, Fan .
WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
[49]   Low-Rank Sparse Subspace for Spectral Clustering [J].
Zhu, Xiaofeng ;
Zhang, Shichao ;
Li, Yonggang ;
Zhang, Jilian ;
Yang, Lifeng ;
Fang, Yue .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (08) :1532-1543
[50]   Efficient noise reduction for interferometric phase image via non-local non-convex low-rank regularisation [J].
Luo, Xiao Mei ;
Suo, Zhi Yong ;
Liu, Qie Gen ;
Wang, Xiang Feng .
IET SIGNAL PROCESSING, 2016, 10 (07) :815-824