Pansharpening With Spatial Hessian Non-Convex Sparse and Spectral Gradient Low Rank Priors

被引:4
作者
Liu, Pengfei [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing 210023, Peoples R China
[2] Jiangsu Key Lab Big Data Secur & Intelligent Proc, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Pansharpening; Laplace equations; Degradation; Spatial resolution; Satellites; Image fusion; Analytical models; spatial Hessian; hyper-Laplacian non-convex sparse prior; spectral gradient low rank; REMOTE-SENSING IMAGES; VARIATIONAL MODEL; LANDSAT TM; FUSION; MULTIRESOLUTION; REGRESSION; ALGORITHM; MS;
D O I
10.1109/TIP.2023.3263103
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To get the high resolution multi-spectral (HRMS) images by the fusion of low resolution multi-spectral (LRMS) and panchromatic (PAN) images, an effectively pansharpening model with spatial Hessian non-convex sparse and spectral gradient low rank priors (PSHNSSGLR) is proposed in this paper. In particularly, from the statistical aspect of view, the spatial Hessian hyper-Laplacian non-convex sparse prior is developed to model the spatial Hessian consistency between HRMS and PAN. More importantly, it is recently the first work for pansharpening modeling with the spatial Hessian hyper-Laplacian non-convex sparse prior. Meanwhile, the spectral gradient low rank prior on HRMS is further developed for spectral feature preservation. Then, the alternating direction method of multipliers (ADMM) approach is applied for optimizing the proposed PSHNSSGLR model. Afterwards, many fusion experiments demonstrate the capability and superiority of PSHNSSGLR.
引用
收藏
页码:2120 / 2131
页数:12
相关论文
共 50 条
  • [21] Cross Spectral and Spatial Scale Non-local Attention-Based Unsupervised Pansharpening Network
    Li, Shuangliang
    Tian, Yugang
    Wang, Cheng
    Wu, Hongxian
    Zheng, Shaolan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 4858 - 4870
  • [22] Image Restoration: From Sparse and Low-Rank Priors to Deep Priors
    Zhang, Lei
    Zuo, Wangmeng
    IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (05) : 172 - 179
  • [23] Spatial-Spectral Structured Sparse Low-Rank Representation for Hyperspectral Image Super-Resolution
    Xue, Jize
    Zhao, Yong-Qiang
    Bu, Yuanyang
    Liao, Wenzhi
    Chan, Jonathan Cheung-Wai
    Philips, Wilfried
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3084 - 3097
  • [24] NON-CONVEX OPTIMIZATION FOR SPARSE INTERFEROMETRIC PHASE ESTIMATION
    Chemudupati, Satvik
    Pokala, Praveen Kumar
    Seelamantula, Chandra Sekhar
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2885 - 2889
  • [25] Hyperspectral image sparse unmixing with non-convex penalties
    Lv, Jun
    Liu, Kai
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (06)
  • [26] Non-convex low-rank representation combined with rank-one matrix sum for subspace clustering
    Liu, Xiaofang
    Wang, Jun
    Cheng, Dansong
    Shi, Daming
    Zhang, Yongqiang
    SOFT COMPUTING, 2020, 24 (20) : 15317 - 15326
  • [27] A new non-convex low rank minimization model to decompose an image into cartoon and texture components
    Ruhela, Riya
    Gupta, Bhupendra
    Lamba, Subir Singh
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 123 : 1 - 12
  • [28] A novel non-convex low-rank tensor approximation model for hyperspectral image restoration
    Lin, Jie
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Ma, Tian-Hui
    Jiang, Tai-Xiang
    Zheng, Yu-Bang
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 408
  • [29] Robust subspace clustering based on non-convex low-rank approximation and adaptive kernel
    Xue, Xuqian
    Zhang, Xiaoqian
    Feng, Xinghua
    Sun, Huaijiang
    Chen, Wei
    Liu, Zhigui
    INFORMATION SCIENCES, 2020, 513 : 190 - 205
  • [30] Image fusion via sparse regularization with non-convex penalties
    Anantrasirichai, Nantheera
    Zheng, Rencheng
    Selesnick, Ivan
    Achim, Alin
    PATTERN RECOGNITION LETTERS, 2020, 131 : 355 - 360