Singular Value Inequalities of Matrix Sum in Log-majorizations

被引:1
作者
Xi, Bo Yan [1 ]
Zhang, Fu Zhen [2 ]
机构
[1] Inner Mongolia Minzu Univ, Coll Math, Tongliao 028043, Peoples R China
[2] Nova Southeastern Univ, Dept Math, 3301 Coll Ave, Ft Lauderdale, FL 33314 USA
基金
中国国家自然科学基金;
关键词
Eigenvalue; Hoffman minimax theorem; Hua determinant inequality; log-majorization; majorization; Minkowski determinant inequality; singular value; Wielandt minimax theorem; EIGENVALUES; PRODUCT;
D O I
10.1007/s10114-023-1512-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show some upper bounds for the product of arbitrarily selected singular values of the sum of two matrices. The results are additional to our previous work on the lower bound eigenvalue inequalities of the sum of two positive semidefinite matrices. Besides, we state explicitly Hoffman's minimax theorem with a proof, and as applications of our main results, we revisit and give estimates for related determinant inequalities of Hua type.
引用
收藏
页码:375 / 386
页数:12
相关论文
共 26 条
[2]  
Ando T., 1980, LINEAR MULTILINEAR A, V8, P347, DOI [10.1080/03081088008817340, DOI 10.1080/03081088008817340]
[3]  
[Anonymous], 1990, Foundations of Majorization Inequalities
[4]  
[Anonymous], 2001, Notices Amer. Math. Soc.
[5]  
[Anonymous], 1955, Proceedings of the American Mathematical Society
[6]  
BHATIA R., 1997, Matrix Analysis, Graduate texts in Mathematics, V169
[7]   Variational principles for symplectic eigenvalues [J].
Bhatia, Rajendra ;
Jain, Tanvi .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (03) :553-559
[8]   Jensen and Minkowski inequalities for operator means and anti-norms [J].
Bourin, Jean-Christophe ;
Hiai, Fumio .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 456 :22-53
[9]   EIGENVECTORS FROM EIGENVALUES: A SURVEY OF A BASIC IDENTITY IN LINEAR ALGEBRA [J].
Denton, Peter B. ;
Parke, Stephen J. ;
Tao, Terence ;
Zhang, Xining .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 59 (01) :31-58