Infinity norm bounds for the inverse for GSDD1 matrices using scaling matrices

被引:0
|
作者
Dai, Ping-Fan [1 ,2 ]
Li, Jinping [3 ]
Zhao, Shaoyu [2 ]
机构
[1] Hanshan Normal Univ, Sch Math & Stat, Chaozhou 521041, Guangdong, Peoples R China
[2] Sanming Univ, Sch Informat Engn, Sanming 365004, Fujian, Peoples R China
[3] Hainan Univ, Sch Sci, Haikou 570228, Hainan, Peoples R China
关键词
Infinity norm bounds; SDD matrices; Error bounds; Linear complementarity problem; LINEAR COMPLEMENTARITY-PROBLEMS; ERROR-BOUNDS;
D O I
10.1007/s40314-022-02165-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many subclasses of H -matrices have already been investigated in application areas of linear algebra. One of them is SDD1 matrices given in Pella (Adv Comput Math 35:357-373, 2011). In this paper, a new subclass of H -matrices, i.e., generalized SDD1(GSDD(1)) matrices, is considered. The relationship between GSDD(1) matrices and other subclasses of H -matrices is analyzed. Infinity norm bounds for the inverse of a GSDD(1) matrix A are given, using a scaling matrix that transforms A into a strictly diagonally dominant matrix. The given scaling matrix is also utilized to obtain error bounds for the linear complementarity problems when the related matrices are GSDD(1) matrices. Numerical examples show that the obtained results can improve other existing bounds.
引用
收藏
页数:21
相关论文
共 25 条
  • [1] Infinity norm bounds for the inverse of Nekrasov matrices using scaling matrices
    Orera, H.
    Pena, J. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 358 : 119 - 127
  • [2] Infinity norm bounds for the inverse for GSDD1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{GSDD}_1$$\end{document} matrices using scaling matrices
    Ping-Fan Dai
    Jinping Li
    Shaoyu Zhao
    Computational and Applied Mathematics, 2023, 42 (3)
  • [3] Infinity norm bounds for the inverse of S DD+1 matrices with applications
    Liu, Lanlan
    Zhu, Yuxue
    Wang, Feng
    Geng, Yuanjie
    AIMS MATHEMATICS, 2024, 9 (08): : 21294 - 21320
  • [4] Infinity norm bounds for the inverse of generalized SDD2 matrices with applications
    Li, Qin
    Ran, Wenwen
    Wang, Feng
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2024, 41 (03) : 1477 - 1500
  • [5] Infinity Norm Bounds for the Inverse of SDD1-Type Matrices with Applications
    Geng, Yuanjie
    Zhu, Yuxue
    Zhang, Fude
    Wang, Feng
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025,
  • [6] Upper triangulation-based infinity norm bounds for the inverse of Nekrasov matrices with applications
    Gao, Lei
    Gu, Xian-Ming
    Jia, Xiudan
    Li, Chaoqian
    NUMERICAL ALGORITHMS, 2024, 97 (04) : 1453 - 1479
  • [7] Infinity norm bounds for the inverse of Quasi-SDDk SDD k matrices with applications
    Li, Qin
    Ran, Wenwen
    Wang, Feng
    NUMERICAL ALGORITHMS, 2024,
  • [8] Schur Complement-Based Infinity Norm Bounds for the Inverse of SDD Matrices
    Li, Chaoqian
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (05) : 3829 - 3845
  • [9] Infinity norm upper bounds for the inverse of S DDk matrices
    Wang, Xiaodong
    Wang, Feng
    AIMS MATHEMATICS, 2023, 8 (10): : 24999 - 25016
  • [10] NEW UPPER BOUNDS FOR THE INFINITY NORM OF NEKRASOV MATRICES
    Gao, Lei
    Liu, Qilong
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03): : 723 - 733