An ependymal cell census identifies heterogeneous and ongoing cell maturation in the adult mouse spinal cord that changes dynamically on injury

被引:21
作者
Albors, Aida Rodrigo [1 ]
Singer, Gail A. [1 ]
Llorens-Bobadilla, Enric [2 ]
Frisen, Jonas [2 ]
May, Andrew P. [3 ,4 ]
Ponting, Chris P. [5 ]
Storey, Kate G. [1 ]
机构
[1] Univ Dundee, Sch Life Sci, Div Mol Cell & Dev Biol, Dundee DD1 5EH, Scotland
[2] Karolinska Inst, Dept Cell & Mol Biol, S-17177 Stockholm, Sweden
[3] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
[4] Tornado Bio Inc, San Francisco, CA 94080 USA
[5] Univ Edinburgh, Inst Genet & Canc, Med Res Council, Human Genet Unit, Edinburgh EH4 2XU, Scotland
基金
英国惠康基金;
关键词
NEURAL STEM-CELLS; RADIAL GLIAL-CELLS; RNA-SEQ; PRECURSOR CELLS; SELF-RENEWAL; PROGENITORS; REVEALS; REGENERATION; ASTROCYTES; EXPRESSION;
D O I
10.1016/j.devcel.2023.01.003
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The adult spinal cord stem cell potential resides within the ependymal cell population and declines with age. Ependymal cells are, however, heterogeneous, and the biological diversity this represents and how it changes with age remain unknown. Here, we present a single-cell transcriptomic census of spinal cord epen-dymal cells from adult and aged mice, identifying not only all known ependymal cell subtypes but also imma-ture as well as mature cell states. By comparing transcriptomes of spinal cord and brain ependymal cells, which lack stem cell abilities, we identify immature cells as potential spinal cord stem cells. Following spinal cord injury, these cells re-enter the cell cycle, which is accompanied by a short-lived reversal of ependymal cell maturation. We further analyze ependymal cells in the human spinal cord and identify widespread cell maturation and altered cell identities. This in-depth characterization of spinal cord ependymal cells provides insight into their biology and informs strategies for spinal cord repair.
引用
收藏
页码:239 / +
页数:28
相关论文
共 107 条
[1]   Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration [J].
Albors, Aida Rodrigo ;
Tazaki, Akira ;
Rost, Fabian ;
Nowoshilow, Sergej ;
Chara, Osvaldo ;
Tanaka, Elly M. .
ELIFE, 2015, 4
[2]  
Alfaro-Cervello C., 2014, J COMP NEUROL
[3]   Biciliated ependymal cell proliferation contributes to spinal cord growth [J].
Alfaro-Cervello, Clara ;
Soriano-Navarro, Mario ;
Mirzadeh, Zaman ;
Alvarez-Buylla, Arturo ;
Garcia-Verdugo, Jose Manuel .
JOURNAL OF COMPARATIVE NEUROLOGY, 2012, 520 (15) :3528-3552
[4]   Experimental design for single-cell RNA sequencing [J].
Baran-Gale, Jeanette ;
Chandra, Tamir ;
Kirschner, Kristina .
BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (04) :233-239
[5]   Stem cells for spinal cord repair [J].
Barnabe-Heider, Fanie ;
Frisen, Jonas .
CELL STEM CELL, 2008, 3 (01) :16-24
[6]   Origin of New Glial Cells in Intact and Injured Adult Spinal Cord [J].
Barnabe-Heider, Fanie ;
Goritz, Christian ;
Sabelstrom, Hanna ;
Takebayashi, Hirohide ;
Pfrieger, Frank W. ;
Meletis, Konstantinos ;
Frisen, Jonas .
CELL STEM CELL, 2010, 7 (04) :470-482
[7]  
Bauchet L, 2013, METHODS MOL BIOL, V1059, P87, DOI 10.1007/978-1-62703-574-3_8
[8]   The spinal ependymal zone as a source of endogenous repair cells across vertebrates [J].
Becker, Catherina G. ;
Becker, Thomas ;
Hugnot, Jean-Philippe .
PROGRESS IN NEUROBIOLOGY, 2018, 170 :67-80
[9]   Neuronal Regeneration from Ependymo-Radial Glial Cells: Cook, Little Pot, Cook! [J].
Becker, Catherina G. ;
Becker, Thomas .
DEVELOPMENTAL CELL, 2015, 32 (04) :516-527
[10]   Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons [J].
Blum, Jacob A. ;
Klemm, Sandy ;
Shadrach, Jennifer L. ;
Guttenplan, Kevin A. ;
Nakayama, Lisa ;
Kathiria, Arwa ;
Hoang, Phuong T. ;
Gautier, Olivia ;
Kaltschmidt, Julia A. ;
Greenleaf, William J. ;
Gitler, Aaron D. .
NATURE NEUROSCIENCE, 2021, 24 (04) :572-583