The Continuous Generalized Wavelet Transform Associated with q-Bessel Operator

被引:2
作者
Dixit, M. M. [1 ]
Pandey, C. P. [1 ]
Das, D. [2 ]
机构
[1] North Eastern Reg Inst Sci & Technol, Dept Math, Itanagar 791109, Arunachal Prade, India
[2] Ghani Khan Choudhury Inst Engn & Technol, Dept Math, Malda 732141, West Bengal, India
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2023年 / 41卷
关键词
q -Bessel function; Bessel Fourier transform; wavelet transform;
D O I
10.5269/bspm.52810
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The continuous generalized wavelet transform associated with q-Bessel operator is defined, which will invariably be called continuous q-Bessel wavelet transform . Certain and boundedness results and inversion formula for continuous q-Bessel wavelet transform are obtained. Discrete q-Bessel wavelet transform is defined and a reconstruction formula is derived for discrete q- Bessel wavelet.
引用
收藏
页数:1
相关论文
共 50 条
  • [21] Continuous Wavelet Transform Involving Linear Canonical Transform
    Prasad, Akhilesh
    Ansari, Z. A.
    [J]. NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2019, 42 (04): : 337 - 344
  • [22] CONTINUOUS WAVELET TRANSFORM OF SCHWARTZ DISTRIBUTIONS
    Pandey, J. N.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (06) : 2005 - 2028
  • [23] THE CONTINUOUS WAVELET TRANSFORM ON ULTRADISTRIBUTION SPACES
    Singh, Abhishek
    Mala, Anshu
    [J]. COLLOQUIUM MATHEMATICUM, 2019, 157 (02) : 189 - 201
  • [24] Continuous Wavelet Transform Applications In Steganography
    Varuikhin, Vladmir
    Levina, Alla
    [J]. 14TH INTERNATIONAL SYMPOSIUM INTELLIGENT SYSTEMS, 2021, 186 : 580 - 587
  • [25] Continuous wavelet transform associated with zero-order Mehler-Fock transform and its composition
    Prasad, Akhilesh
    Verma, S. K.
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (06)
  • [26] Pattern recognition by means of the Radon transform and the continuous wavelet transform
    Magli, E
    Olmo, G
    Lo Presti, L
    [J]. SIGNAL PROCESSING, 1999, 73 (03) : 277 - 289
  • [27] Lebedev-Skalskaya Transform Related Continuous Wavelet Transform
    Gupt, Ajay K.
    Mandal, U. K.
    Prasad, Akhilesh
    [J]. RESULTS IN MATHEMATICS, 2024, 79 (03)
  • [28] Solution of Integral Equations by Generalized Wavelet Transform
    Loonker, Deshna
    Banerji, P. K.
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2015, 33 (02): : 89 - +
  • [29] Wavelet Transform With Tunable Q-Factor
    Selesnick, Ivan W.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (08) : 3560 - 3575
  • [30] Generalized Tree-Based Wavelet Transform
    Ram, Idan
    Elad, Michael
    Cohen, Israel
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (09) : 4199 - 4209