Revisiting Consistency Regularization for Semi-Supervised Learning

被引:30
|
作者
Fan, Yue [1 ]
Kukleva, Anna [1 ]
Dai, Dengxin [1 ]
Schiele, Bernt [1 ]
机构
[1] Max Planck Inst Informat, Saarland Informat Campus, Saarbrucken, Germany
关键词
Semi-supervised learning; Consistency regularization; Representation learning; Classification;
D O I
10.1007/s11263-022-01723-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Consistency regularization is one of the most widely-used techniques for semi-supervised learning (SSL). Generally, the aim is to train a model that is invariant to various data augmentations. In this paper, we revisit this idea and find that enforcing invariance by decreasing distances between features from differently augmented images leads to improved performance. However, encouraging equivariance instead, by increasing the feature distance, further improves performance. To this end, we propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss, that imposes consistency and equivariance on the classifier and the feature level, respectively. Experimental results show that our model defines a new state of the art across a variety of standard semi-supervised learning benchmarks as well as imbalanced semi-supervised learning benchmarks. Particularly, we outperform previous work by a significant margin in low data regimes and at large imbalance ratios. Extensive experiments are conducted to analyze the method, and the code will be published.
引用
收藏
页码:626 / 643
页数:18
相关论文
共 50 条
  • [21] CGT: Consistency Guided Training in Semi-Supervised Learning
    Hasan, Nesreen
    Ghorban, Farzin
    Velten, Joerg
    Kummert, Anton
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2022, : 55 - 64
  • [22] Consistency regularization based semi-supervised plant disease recognition
    Ilsever, Murat
    Baz, Ipek
    SMART AGRICULTURAL TECHNOLOGY, 2024, 9
  • [23] MANIFOLD REGULARIZATION FOR SEMI-SUPERVISED SEQUENTIAL LEARNING
    Moh, Yvonne
    Buhmann, Joachim M.
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1617 - 1620
  • [24] Semi-supervised Nuclei Segmentation Based on Consistency Regularization Constraint
    Shu J.
    Nian F.
    Lü G.
    Nian, Fudong (nianfd@hfuu.edu.cn), 1600, Science Press (33): : 643 - 652
  • [25] Consistency regularization for deep semi-supervised clustering with pairwise constraints
    Dan Huang
    Jie Hu
    Tianrui Li
    Shengdong Du
    Hongmei Chen
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 3359 - 3372
  • [26] Semi-supervised Audio Classification with Consistency-Based Regularization
    Lu, Kangkang
    Foo, Chuan-Sheng
    Teh, Kah Kuan
    Huy Dat Tran
    Chandrasekhar, Vijay Ramaseshan
    INTERSPEECH 2019, 2019, : 3654 - 3658
  • [27] Dual Dynamic Consistency Regularization for Semi-Supervised Domain Adaptation
    Ngo, Ba Hung
    Lam, Ba Thinh
    Nguyen, Thanh Huy
    Dinh, Quang Vinh
    Choi, Tae Jong
    IEEE ACCESS, 2024, 12 : 36267 - 36279
  • [28] Semi-supervised Deep Learning via Transformation Consistency Regularization for Remote Sensing Image Semantic Segmentation
    Zhang, Bin
    Zhang, Yongjun
    Li, Yansheng
    Wan, Yi
    Guo, Haoyu
    Zheng, Zhi
    Yang, Kun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 5782 - 5796
  • [29] Consistency regularization for deep semi-supervised clustering with pairwise constraints
    Huang, Dan
    Hu, Jie
    Li, Tianrui
    Du, Shengdong
    Chen, Hongmei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (11) : 3359 - 3372
  • [30] Dual Consistency Regularization for Semi-supervised Medical Image Segmentation
    Wei, Lin
    Sha, Runxuan
    Shi, Yucheng
    Wang, Qingxian
    Shi, Lei
    Gao, Yufei
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT V, ICIC 2024, 2024, 14866 : 197 - 206