Improved constant phase fractional order approximation method for induction motor FOPI speed controller

被引:3
作者
Adigintla, Sudheer [1 ]
Aware, Mohan, V [1 ]
机构
[1] Visvesvaraya Natl Inst Technol, Dept Elect Engn, Nagpur, Maharashtra, India
关键词
approximation method; control effort; field-oriented control; FOPI controller; PI controller; voltage source inverter; DESIGN; SYSTEMS;
D O I
10.1002/cta.3472
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the digital realization of the fractional-order PI (FOPI) controller fractional integrator element using the improved constant phase approximation method. A new pole-zero rationalization approach is proposed within the bandwidth of the Bode phase plot. The voltage source inverter fed induction motor fractional-order model has been identified. A novel mathematical FOPI controller design procedure for the identified FO plant model has been proposed. The designed FOPI controller fractional integrator element is implemented using the constant phase approximation method. A detailed comparative performance study of the proposed approximation method with the existing Charef, Oustaloup, and refined Oustaloup methods has been carried out using the Bode, Nyquist, and Nichols plots. The proposed FOPI controller is placed in the speed feedback loop of the rotor field-oriented control algorithm of IM. To confirm the proposed FOPI controller approximation method's robustness, a hardware study is carried out on the laboratory hardware-in-loop (HIL) platform. In addition, variation in the number of pole-zero pair's effect on the speed tracking performance, robustness against parameter and load variations are also analyzed.
引用
收藏
页码:1069 / 1091
页数:23
相关论文
共 37 条
[1]   Design and analysis of a speed controller for fractional-order-modeled voltage-source-inverter-fed induction motor drive [J].
Adigintla, Sudheer ;
Aware, Mohan, V .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2022, 50 (07) :2378-2397
[2]  
Aware MV, 2017, ANALOG INTEGR CIRC S, V91, P131, DOI 10.1007/s10470-016-0920-0
[3]   Fractional-Order Modeling and Identification for a Phantom EEG System [J].
Besancon, Gildas ;
Becq, Guillaume ;
Voda, Alina .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (01) :130-138
[4]  
Bode H. W., 1945, NETWORK ANAL FEEDBAC
[5]   A review of PID control, tuning methods and applications [J].
Borase, Rakesh P. ;
Maghade, D. K. ;
Sondkar, S. Y. ;
Pawar, S. N. .
INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2021, 9 (02) :818-827
[6]   A comparative experimental analysis of fractional order PI controller based direct torque control scheme for induction motor drive [J].
Chandra Sekhar, Obbu ;
Lakhimsetty, Suresh ;
Bhat, Abdul Hamid .
INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2021, 31 (01)
[7]   Design and Implementation of Digital Fractional Order PID Controller Using Optimal Pole-Zero Approximation Method for Magnetic Levitation System [J].
Chopade, Amit S. ;
Khubalkar, Swapnil W. ;
Junghare, A. S. ;
Aware, M. V. ;
Das, Shantanu .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2018, 5 (05) :977-989
[8]   Rational Approximations of Arbitrary Order: A Survey [J].
Colin-Cervantes, Jose Daniel ;
Sanchez-Lopez, Carlos ;
Ochoa-Montiel, Rocio ;
Torres-Munoz, Delia ;
Hernandez-Mejia, Carlos Manuel ;
Sanchez-Gaspariano, Luis Abraham ;
Gonzalez-Hernandez, Hugo Gustavo .
FRACTAL AND FRACTIONAL, 2021, 5 (04)
[9]   A brief review and future outline on decision making using fuzzy soft set [J].
Das, Sujit ;
Malakar, Debashish ;
Kar, Samarjit ;
Pal, Tandra .
International Journal of Fuzzy System Applications, 2018, 7 (02) :1-43
[10]  
Das S., 2011, INT C EN AUT SIGN IC, P1