α-Ideals in Bounded Commutative Residuated Lattices

被引:0
作者
Kakeu, Ariane G. Tallee [1 ]
Strungmann, Lutz [2 ]
Njionou, Blaise B. Koguep [1 ]
Lele, Celestin [1 ]
机构
[1] Univ Dschang, Fac Sci, Dept Math & Comp Sci, POB 67, Dschang, West Region, Cameroon
[2] Mannheim Univ Appl Sci, Fac Comp Sci, D-68163 Mannheim, Germany
关键词
Bounded commutative residuated lattice; Heyting algebra; ideal; prime ideal; annihilator; alpha-ideal; CLOSURE OPERATORS; PRIME; ALGEBRAS; FILTERS; SPACES; LOGIC;
D O I
10.1142/S1793005723500254
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study aims to introduce the concept of alpha-ideal in bounded commutative residuated lattices and establish some related properties. In this paper, we show that the set of alpha-ideals of a bounded commutative residuated lattice is a Heyting algebra, and an algebraic lattice. Moreover, we state the prime alpha-ideal theorem, and describe relations between alpha-ideals and some types of ideals of a bounded commutative residuated lattice. Finally, we discuss correspondences between alpha-ideals and alpha-filters of a bounded commutative residuated lattice.
引用
收藏
页码:611 / 630
页数:20
相关论文
共 30 条
  • [1] SEMISIMPLE ALGEBRAS OF INFINITE VALUED LOGIC AND BOLD FUZZY SET-THEORY
    BELLUCE, LP
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1986, 38 (06): : 1356 - 1379
  • [2] Bergman GM., 2015, UNIVERSITEXT
  • [3] Blyth T.S., 2005, UNIVERSITEX, DOI 10.1007/ b139095
  • [4] The stable topology for residuated lattices
    Busneag, Catalin
    Piciu, Dana
    [J]. SOFT COMPUTING, 2012, 16 (10) : 1639 - 1655
  • [5] Busneag D, 2021, CARPATHIAN J MATH, V37, P53
  • [6] Busneag D, 2015, J MULT-VALUED LOG S, V24, P529
  • [7] Cattaneo G, 2009, LECT NOTES COMPUT SC, V5656, P67, DOI 10.1007/978-3-642-03281-3_3
  • [8] Cornish W.H., 1973, J. Aust. Math. Soc., V15, P70
  • [9] Cretan R, 2006, ANN UNIV CRAIOVA-MAT, V33, P174
  • [10] Dong YY, 2019, SOFT COMPUT, V23, P3207, DOI 10.1007/s00500-018-3195-9