Superwettable Electrolyte Engineering for Fast Charging Li-Ion Batteries

被引:16
|
作者
Li, Chao [1 ,2 ,3 ]
Liang, Zhenye [2 ]
Wang, Lina [4 ]
Cao, Daofan [3 ]
Yin, Yun-Chao [2 ]
Zuo, Daxian [2 ]
Chang, Jian [5 ]
Wang, Jun [5 ]
Liu, Ke [3 ,5 ]
Li, Xing [6 ]
Luo, Guangfu [4 ]
Deng, Yonghong [4 ,5 ]
Wan, Jiayu [2 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Shanghai Jiao Tong Univ, Global Inst Future Technol, Future Battery Res Ctr, Shanghai, Peoples R China
[3] Southern Univ Sci & Technol, Coll Sci, Dept Chem, Shenzhen 518055, Peoples R China
[4] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[5] Southern Univ Sci & Technol, Sch Innovat & Entrepreneurship, Shenzhen 518055, Peoples R China
[6] Contemporary Amperex Technol Ltd CATL, Ningde 352100, Peoples R China
基金
中国国家自然科学基金;
关键词
INORGANIC COMPONENTS; INTERPHASE; SEI; ADDITIVES; GRAPHITE; WETTABILITY; PERFORMANCE; GENERATION; CHALLENGES; ANODES;
D O I
10.1021/acsenergylett.3c02572
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite ubiquitous application, lithium-ion batteries (LIBs) still face significant challenges in terms of fast charging over extended cycles. This is primarily due to the incomplete coverage and unsatisfactory performance of the solid electrolyte interphase (SEI) layer. However, conventional electrolyte engineering methods can be hindered by increased viscosity, low wettability, and high cost in growing an ideal SEI. Herein, we propose a general strategy that tackles this challenge using superwettable electrolytes with ultralow concentration, which enables uniform and complete coverage of the SEI on a graphite anode. Intriguingly, this electrolyte can cause high overpotentials during the low-current formation process, leading to an SEI layer rich in inorganic components. As a result, LIBs with superwettable electrolytes exhibit remarkable cycle stability and high-rate performance of 5 C at a capacity of 166 mAh g(-1), which is also verified in pouch cells. Our research introduces a simple and effective strategy to achieve an optimized SEI layer for LIBs, which can be readily extended to other battery systems.
引用
收藏
页码:1295 / 1304
页数:10
相关论文
共 50 条
  • [21] 'Pickled' electrolyte improves Li-ion batteries
    不详
    AMERICAN CERAMIC SOCIETY BULLETIN, 2018, 97 (06): : 16 - 16
  • [22] Stabilization effect of solid-electrolyte interphase by electrolyte engineering for advanced Li-ion batteries
    Bintang, His Muhammad
    Seongsoo, Lee
    Shin, Sunghee
    Kim, Byung Gon
    Jung, Hun-Gi
    Whang, Dongmok
    Lim, Hee-Dae
    CHEMICAL ENGINEERING JOURNAL, 2021, 424
  • [23] Stabilization effect of solid-electrolyte interphase by electrolyte engineering for advanced Li-ion batteries
    Bintang, His Muhammad
    Lee, Seongsoo
    Shin, Sunghee
    Kim, Byung Gon
    Jung, Hun-Gi
    Whang, Dongmok
    Lim, Hee-Dae
    Chemical Engineering Journal, 2021, 424
  • [24] Operando Measurements of Electrolyte Li-ion Concentration during fast charging with FTIR/ATR
    Meyer, Lydia
    Curran, David
    Brow, Ryan
    Santhanagopalan, Shriram
    Porter, Jason
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)
  • [25] Composite polymer electrolyte: A potential electrolyte for Li-ion batteries
    Hazra, A
    Basumallick, IN
    BULLETIN OF ELECTROCHEMISTRY, 2001, 17 (10): : 477 - 480
  • [26] Cathode Chemistries and Electrode Parameters Affecting the Fast Charging Performance of Li-Ion Batteries
    Zhao, Rui
    Liu, Jie
    Ma, Fai
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2020, 17 (02)
  • [27] Improving the fast-charging capability of NbWO-based Li-ion batteries
    Guo, Yaqing
    Guo, Chi
    Li, Penghui
    Song, Wenjun
    Huang, Weiyuan
    Yan, Junxin
    Liao, Xiaobin
    He, Kun
    Sha, Wuxin
    Zeng, Xuemei
    Tang, Xinyue
    Ren, Qingqing
    Wang, Shun
    Amine, Khalil
    Nie, Anmin
    Liu, Tongchao
    Yuan, Yifei
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [28] Experimental comparison of fast-charging protocols for NMC and NCA Li-ion batteries
    Bhoir, Shubham Sharad
    Brivio, Claudio
    Namor, Emil
    Hutter, Andreas
    2021 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2021,
  • [29] Controlling the Crystallographic Orientation of Graphite Electrodes for Fast-Charging Li-Ion Batteries
    Bayindir, Oguz
    Sohel, Ikramul Hasan
    Erol, Melek
    Duygulu, Ozgur
    Ate, Mehmet Nurullah
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) : 891 - 899
  • [30] Particle size effect of graphite anodes on performance of fast charging Li-ion batteries
    Wang, Guanyi
    Mijailovic, Aleksandar
    Yang, Jian
    Xiong, Jie
    Beasley, Sarah E.
    Mathew, Kevin
    Zhou, Bingyao
    Lu, Wenquan
    Sheldon, Brian W.
    Wu, Qingliu
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (40) : 21793 - 21805