Numerical analysis of thermophoretic particle deposition on 3D Casson nanofluid: Artificial neural networks-based Levenberg-Marquardt algorithm

被引:4
作者
Khan, Amna [1 ]
Aljuaydi, Fahad [2 ]
Khan, Zeeshan [1 ]
Islam, Saeed [1 ]
机构
[1] Abdul Wali Khan Univ Mardan, Dept Math, Mardan 23200, Khyber Pakhtunk, Pakistan
[2] Prince Sattam Bin Abdul Aziz Univ, Coll Sci & Humanities, Dept Math, Al Kharj 11942, Saudi Arabia
来源
OPEN PHYSICS | 2024年 / 22卷 / 01期
关键词
nanofluid; sodium alginate nanoparticles; Casson fluids; stretched surface; Levenberg; Marquardt backpropagation algorithm; neural networks; PERMEABLE STRETCHING SHEET; FLOW; POWER;
D O I
10.1515/phys-2023-0181
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The aim of this research is to provide a new computer-assisted approach for predicting thermophoresis particle decomposition on three-dimensional Casson nanofluid flow that passed over a stretched surface (thermophoresis particle decomposition on three-dimensional Casson nanofluid flow; TPD-CNF). In order to understand the flow behavior of nanofluid flow model, an optimized Levenberg-Marquardt learning algorithm with backpropagation neural network (LMLA-BPNN) has been designed. The mathematical model of TPD-CNF framed with appropriate assumptions and turned into ordinary differential equations via suitable similarity transformations are used. The bvp4c approach is used to collect the data for the LMLA-BPNN, which is used for parameters related with the TPD-CNF model controlling the velocity, temperature, and nanofluid concentration profiles. The proposed algorithm LMLA-BPNN is used to evaluate the obtained TDP-CNF model performance in various instances, and a correlation of the findings with a reference dataset is performed to check the validity and efficacy of the proposed algorithm for the analysis of nanofluids flow composed of sodium alginate nanoparticles dispersed in base fluid water. Statistical tools such as Mean square error, State transition dynamics, regression analysis, and error dynamic histogram investigations all successfully validate the suggested LMLA-BPNN for solving the TPD-CNF model. LMLA-BPNN networks have been used to numerically study the impact of different parameters of interest, such as Casson parameter, power-law index, thermophoretic parameter, and Schmidt number on flow profiles (axial and transverse), and energy and nanofluid concentration profiles. The range, i.e., 10(-4)-10(-5) of absolute error of the reference and target data demonstrates the optimal accuracy performance of LMLA-BPNN networks.
引用
收藏
页数:27
相关论文
共 71 条
  • [1] Aiding and opposing of mixed convection Casson nanofluid flow with chemical reactions through a porous Riga plate
    Abbas, Tehseen
    Bhatti, Muhammad Mubashir
    Ayub, Muhammad
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2018, 232 (05) : 519 - 527
  • [2] 3-D electromagnetic radiative non-Newtonian nanofluid flow with Joule heating and higher-order reactions in porous materials
    Alaidrous, Amel A.
    Eid, Mohamed R.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [3] Finite element simulation of bioconvection and cattaneo-Christov effects on micropolar based nanofluid flow over a vertically stretching sheet
    Ali, Bagh
    Hussain, Sajjad
    Nie, Yufeng
    Ali, Liaqat
    Ul Hassan, Shabih
    [J]. CHINESE JOURNAL OF PHYSICS, 2020, 68 : 654 - 670
  • [4] A Finite Element Simulation of the Active and Passive Controls of the MHD Effect on an Axisymmetric Nanofluid Flow with Thermo-Diffusion over a Radially Stretched Sheet
    Ali, Bagh
    Yu, Xiaojun
    Sadiq, Muhammad Tariq
    Rehman, Ateeq Ur
    Ali, Liaqat
    [J]. PROCESSES, 2020, 8 (02)
  • [5] A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties
    Ali, Naser
    Teixeira, Joao A.
    Addali, Abdulmajid
    [J]. JOURNAL OF NANOMATERIALS, 2018, 2018
  • [6] Aljuaydi F., 2023, International Journal of Thermofluids, V20
  • [7] Aman S., 2018, J ADV RES FLUID MECH, V44, P131
  • [8] Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization
    Asif, Daniyal
    Bibi, Mairaj
    Arif, Muhammad Shoaib
    Mukheimer, Aiman
    [J]. ALGORITHMS, 2023, 16 (06)
  • [9] An Efficient and Accurate Approach to Electrical Boundary Layer Nanofluid Flow Simulation: A Use of Artificial Intelligence
    Baazeem, Amani S.
    Arif, Muhammad Shoaib
    Abodayeh, Kamaleldin
    [J]. PROCESSES, 2023, 11 (09)
  • [10] Forecasting discharge rate and chloride content of karstic spring water by applying the Levenberg-Marquardt algorithm
    Bekas, Georgios K.
    Alexakis, Dimitrios E.
    Gamvroula, Dimitra E.
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2021, 80 (11)