Carrollian structure of the null boundary solution space

被引:10
作者
Adami, H. [1 ,2 ]
Parvizi, A. [3 ]
Sheikh-Jabbari, M. M. [3 ]
Taghiloo, V. [3 ,4 ]
Yavartanoo, H. [2 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[2] Beijing Inst Math Sci & Applicat BIMSA, Beijing 101408, Peoples R China
[3] Inst Res Fundamental Sci IPM, Sch Phys, POB 19395-5531, Tehran, Iran
[4] Inst Adv Studies Basic Sci IASBS, Dept Phys, POB 45137-66731, Zanjan, Iran
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Black Holes; Classical Theories of Gravity; Space-Time Symmetries; ASYMPTOTIC SYMMETRIES;
D O I
10.1007/JHEP02(2024)073
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study pure D dimensional Einstein gravity in spacetimes with a generic null boundary. We focus on the symplectic form of the solution phase space which comprises a 2D dimensional boundary part and a 2(D(D - 3)/2 + 1) dimensional bulk part. The symplectic form is the sum of the bulk and boundary parts, obtained through integration over a codimension 1 surface (null boundary) and a codimension 2 spatial section of it, respectively. Notably, while the total symplectic form is a closed 2-form over the solution phase space, neither the boundary nor the bulk symplectic forms are closed due to the symplectic flux of the bulk modes passing through the boundary. Furthermore, we demonstrate that the D(D - 3)/2 + 1 dimensional Lagrangian submanifold of the bulk part of the solution phase space has a Carrollian structure, with the metric on the D(D - 3)/2 dimensional part being the Wheeler-DeWitt metric, and the Carrollian kernel vector corresponding to the outgoing Robinson-Trautman gravitational wave solution.
引用
收藏
页数:36
相关论文
共 62 条
[11]   BMS charge algebra [J].
Barnich, Glenn ;
Troessaert, Cedric .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (12)
[12]   Symmetries of Asymptotically Flat Four-Dimensional Spacetimes at Null Infinity Revisited [J].
Barnich, Glenn ;
Troessaert, Cedric .
PHYSICAL REVIEW LETTERS, 2010, 105 (11)
[13]   Aspects of the BMS/CFT correspondence [J].
Barnich, Glenn ;
Troessaert, Cedric .
JOURNAL OF HIGH ENERGY PHYSICS, 2010, (05)
[14]   Multipole expansion of gravitational waves: memory effects and Bondi aspects [J].
Blanchet, Luc ;
Compere, Geoffrey ;
Faye, Guillaume ;
Oliveri, Roberto ;
Seraj, Ali .
JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (07)
[15]   CENTRAL CHARGES IN THE CANONICAL REALIZATION OF ASYMPTOTIC SYMMETRIES - AN EXAMPLE FROM 3-DIMENSIONAL GRAVITY [J].
BROWN, JD ;
HENNEAUX, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (02) :207-226
[16]   Generalized BMS charge algebra [J].
Campiglia, Miguel ;
Peraza, Javier .
PHYSICAL REVIEW D, 2020, 101 (10)
[17]  
Chandrasekaran V, 2024, Arxiv, DOI arXiv:2309.03871
[18]   Brown-York charges at null boundaries [J].
Chandrasekaran, Venkatesa ;
Flanagan, Eanna E. ;
Shehzad, Ibrahim ;
Speranza, Antony J. .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
[19]   Symmetries and charges of general relativity at null boundaries [J].
Chandrasekaran, Venkatesa ;
Flanagan, Eanna E. ;
Prabhu, Kartik .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11)
[20]   Hamiltonian charges on light cones for linear field theories on (A)dS backgrounds [J].
Chrusciel, Piotr T. ;
Smolka, Tomasz .
JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (10)