Co-regularized Facial Age Estimation with Graph-Causal Learning

被引:0
作者
Wang, Tao [1 ]
Dong, Xin [1 ]
Li, Zhendong [1 ,2 ,3 ,4 ]
Liu, Hao [1 ,2 ,3 ,4 ]
机构
[1] Ningxia Univ, Sch Informat Engn, Yinchuan 750021, Ningxia, Peoples R China
[2] Collaborat Innovat Ctr Ningxia Big Data & Artific, Yinchuan 750021, Ningxia, Peoples R China
[3] Minist Educ, Yinchuan 750021, Ningxia, Peoples R China
[4] Key Lab Internet Water & Digital Water Governance, Yinchuan 750021, Ningxia, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII | 2024年 / 14432卷
基金
美国国家科学基金会;
关键词
Facial age estimation; Causal learning; Graph convolutional networks;
D O I
10.1007/978-981-99-8543-2_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a graph-causal regularization (GCR) for robust facial age estimation. Existing label facial age estimation methods often suffer from overfitting and overconfidence issues due to limited data and domain bias. To address these challenges and leveraging the chronological correlation of age labels, we propose a dynamic graph learning method that enforces causal regularization to discover an attentive feature space while preserving age label dependencies. To mitigate domain bias and enhance aging details, our approach incorporates counterfactual attention and bilateral pooling fusion techniques. Consequently, the proposed GCR achieves reliable feature learning and accurate ordinal decision-making within a globally-tuned framework. Extensive experiments under widely-used protocols demonstrate the superior performance of GCR compared to state-of-the-art approaches.
引用
收藏
页码:155 / 166
页数:12
相关论文
共 36 条
[21]   Face Image Age Estimation Based on Data Augmentation and Lightweight Convolutional Neural Network [J].
Liu, Xinhua ;
Zou, Yao ;
Kuang, Hailan ;
Ma, Xiaolin .
SYMMETRY-BASEL, 2020, 12 (01)
[22]   Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification [J].
Rao, Yongming ;
Chen, Guangyi ;
Lu, Jiwen ;
Zhou, Jie .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :1005-1014
[23]  
Ricanek K, 2006, PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION - PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE, P341
[24]   Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks [J].
Rothe, Rasmus ;
Timofte, Radu ;
Van Gool, Luc .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2018, 126 (2-4) :144-157
[25]   DEX: Deep EXpectation of apparent age from a single image [J].
Rothe, Rasmus ;
Timofte, Radu ;
Van Gool, Luc .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, :252-257
[26]   Deep Regression Forests for Age Estimation [J].
Shen, Wei ;
Guo, Yilu ;
Wang, Yan ;
Zhao, Kai ;
Wang, Bo ;
Yuille, Alan .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2304-2313
[27]  
Tan ZC, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P3548
[28]   Efficient Group-n Encoding and Decoding for Facial Age Estimation [J].
Tan, Zichang ;
Wan, Jun ;
Lei, Zhen ;
Zhi, Ruicong ;
Guo, Guodong ;
Li, Stan Z. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (11) :2610-2623
[29]  
Vermeire T, 2020, Arxiv, DOI arXiv:2004.07511
[30]  
Wang T., 2021, arXiv, DOI DOI 10.48550/ARXIV.2108.08782