Co-regularized Facial Age Estimation with Graph-Causal Learning

被引:0
作者
Wang, Tao [1 ]
Dong, Xin [1 ]
Li, Zhendong [1 ,2 ,3 ,4 ]
Liu, Hao [1 ,2 ,3 ,4 ]
机构
[1] Ningxia Univ, Sch Informat Engn, Yinchuan 750021, Ningxia, Peoples R China
[2] Collaborat Innovat Ctr Ningxia Big Data & Artific, Yinchuan 750021, Ningxia, Peoples R China
[3] Minist Educ, Yinchuan 750021, Ningxia, Peoples R China
[4] Key Lab Internet Water & Digital Water Governance, Yinchuan 750021, Ningxia, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII | 2024年 / 14432卷
基金
美国国家科学基金会;
关键词
Facial age estimation; Causal learning; Graph convolutional networks;
D O I
10.1007/978-981-99-8543-2_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a graph-causal regularization (GCR) for robust facial age estimation. Existing label facial age estimation methods often suffer from overfitting and overconfidence issues due to limited data and domain bias. To address these challenges and leveraging the chronological correlation of age labels, we propose a dynamic graph learning method that enforces causal regularization to discover an attentive feature space while preserving age label dependencies. To mitigate domain bias and enhance aging details, our approach incorporates counterfactual attention and bilateral pooling fusion techniques. Consequently, the proposed GCR achieves reliable feature learning and accurate ordinal decision-making within a globally-tuned framework. Extensive experiments under widely-used protocols demonstrate the superior performance of GCR compared to state-of-the-art approaches.
引用
收藏
页码:155 / 166
页数:12
相关论文
共 36 条
[11]  
Guo GD, 2009, PROC CVPR IEEE, P112, DOI 10.1109/CVPRW.2009.5206681
[12]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[13]   Data-Dependent Label Distribution Learning for Age Estimation [J].
He, Zhouzhou ;
Li, Xi ;
Zhang, Zhongfei ;
Wu, Fei ;
Geng, Xin ;
Zhang, Yaqing ;
Yang, Ming-Hsuan ;
Zhuang, Yueting .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (08) :3846-3858
[14]  
Kipf ThomasN., 2016, INT C LEARN REPR, DOI DOI 10.48550/ARXIV.1609.02907
[15]   Comparing different classifiers for automatic age estimation [J].
Lanitis, A ;
Draganova, C ;
Christodoulou, C .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (01) :621-628
[16]  
Li W., 2022, arXiv
[17]   MetaAge: Meta-Learning Personalized Age Estimators [J].
Li, Wanhua ;
Lu, Jiwen ;
Wuerkaixi, Abudukelimu ;
Feng, Jianjiang ;
Zhou, Jie .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 :4761-4775
[18]   BridgeNet: A Continuity-Aware Probabilistic Network for Age Estimation [J].
Li, Wanhua ;
Lu, Jiwen ;
Feng, Jianjiang ;
Xu, Chunjing ;
Zhou, Jie ;
Tian, Qi .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1145-1154
[19]   GRES: Generalized Referring Expression Segmentation [J].
Liu, Chang ;
Ding, Henghui ;
Jiang, Xudong .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :23592-23601
[20]   Ordinal Deep Feature Learning for Facial Age Estimation [J].
Liu, Hao ;
Lu, Jiwen ;
Feng, Jianjiang ;
Zhou, Jie .
2017 12TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION (FG 2017), 2017, :157-164