Regulating intragap states in colloidal quantum dots for universal photocatalytic hydrogen evolution

被引:12
作者
Cai, Mengke [1 ]
Tong, Xin [1 ]
Zhao, Hongyang [1 ]
Liao, Peisen [2 ]
Pan, Liang [1 ]
Li, Guangqin [2 ]
Wang, Zhiming M. [1 ,3 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem, Guangzhou 510275, Peoples R China
[3] Chengdu Univ, Inst Adv Study, Chengdu 610106, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2024年 / 343卷
关键词
Colloidal quantum dots; Defect engineering; Hot; -electron; Intragap states; Photocatalytic hydrogen generation; METAL-ORGANIC FRAMEWORKS; ELECTRONIC-STRUCTURE; CHARGE-TRANSFER; SEMICONDUCTOR NANORODS; PHONON BOTTLENECK; EFFICIENT; INTERFACE; DEFECT; NANOCRYSTALS; RELAXATION;
D O I
10.1016/j.apcatb.2023.123572
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding and manipulating intragap states in semiconductors may enable superior solar-to-hydrogen energy conversion. The effect of intragap states on photocatalysis usually remains unclear and is sometimes contradictory. Quantum-confined colloidal quantum dots (QDs) provide a unique platform to tune the density and distribution of intragap states due to their discrete energy levels. Herein, intragap active domains, composed of Cu vacancies (VCu ') and high-valent Cu (Cu*) defect states, are constructed in copper-deficient Zn-doped CuInS2 QDs. Note that these intragap states mainly exist at in-facet and on-edge defects in QDs, being away from the valence band maximum and close to Fermi level. Steady and transient optical spectra indicate that photo-activated Cu* states serving as photoinduced absorption centers can facilitate the generation of long-lived hot electrons (ca. 85 ps) as a manifestation of phonon bottleneck. Synergistically, the VCu ' states enable the holes capture and electron-hole pairs decoupling to suppress ultrafast Auger-like hot carrier cooling (ca. 178 fs). Moreover, the on-edge defects are demonstrated to play an active role in mediating proton reduction kinetics through density functional calculation. As a result, the QDs exhibit an outstanding hydrogen generation rate of 50.4 mmol g-1 h-1 without any noble metal, meanwhile, various molecule oxidation and polymer degradation can be integrated with the hydrogen generation process.
引用
收藏
页数:11
相关论文
共 100 条
[61]   Energy band structure of CuInS2 and optical spectra of CuInS2 nanocrystals [J].
Shabaev, A. .
PHYSICAL REVIEW B, 2015, 92 (03)
[62]   Strong synergy between gold nanoparticles and cobalt porphyrin induces highly efficient photocatalytic hydrogen evolution [J].
Sheng, Huixiang ;
Wang, Jin ;
Huang, Juhui ;
Li, Zhuoyao ;
Ren, Guozhang ;
Zhang, Linrong ;
Yu, Liuyingzi ;
Zhao, Mengshuai ;
Li, Xuehui ;
Li, Gongqiang ;
Wang, Ning ;
Shen, Chen ;
Lu, Gang .
NATURE COMMUNICATIONS, 2023, 14 (01)
[63]   Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution [J].
Shi, Xiaowei ;
Dai, Chao ;
Wang, Xin ;
Hu, Jiayue ;
Zhang, Junying ;
Zheng, Lingxia ;
Mao, Liang ;
Zheng, Huajun ;
Zhu, Mingshan .
NATURE COMMUNICATIONS, 2022, 13 (01)
[64]   Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations [J].
Skulason, Egill ;
Tripkovic, Vladimir ;
Bjorketun, Marten E. ;
Gudmundsdottir, Sigridur ;
Karlberg, Gustav ;
Rossmeisl, Jan ;
Bligaard, Thomas ;
Jonsson, Hannes ;
Norskov, Jens K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (42) :18182-18197
[65]   Recent advances in quantum dot catalysts for hydrogen evolution: Synthesis, characterization, and photocatalytic application [J].
Su, Haiwei ;
Wang, Weikang ;
Shi, Run ;
Tang, Hua ;
Sun, Lijuan ;
Wang, Lele ;
Liu, Qinqin ;
Zhang, Tierui .
CARBON ENERGY, 2023, 5 (09)
[66]   Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution [J].
Sun, Yamei ;
Xue, Ziqian ;
Liu, Qinglin ;
Jia, Yaling ;
Li, Yinle ;
Liu, Kang ;
Lin, Yiyang ;
Liu, Min ;
Li, Guangqin ;
Su, Cheng-Yong .
NATURE COMMUNICATIONS, 2021, 12 (01)
[67]   Photocatalytic water splitting with a quantum efficiency of almost unity [J].
Takata, Tsuyoshi ;
Jiang, Junzhe ;
Sakata, Yoshihisa ;
Nakabayashi, Mamiko ;
Shibata, Naoya ;
Nandal, Vikas ;
Seki, Kazuhiko ;
Hisatomi, Takashi ;
Domen, Kazunari .
NATURE, 2020, 581 (7809) :411-+
[68]   Hole Concentration Reduction in CuI by Zn Substitution and its Mechanism: Toward Device Applications [J].
Tsuji, Masatake ;
Iimura, Soshi ;
Kim, Junghwan ;
Hosono, Hideo .
ACS APPLIED MATERIALS & INTERFACES, 2022, :33463-33471
[69]   Exciton, Biexciton, and Hot Exciton Dynamics in CsPbBr3 Colloidal Nanoplatelets [J].
Vale, Brener R. C. ;
Socie, Etienne ;
Burgos-Caminal, Andres ;
Bettini, Jefferson ;
Schiavon, Marco A. ;
Moser, Jacques-E. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (02) :387-394
[70]   Tuning and Probing the Distribution of Cu+ and Cu2+ Trap States Responsible for Broad-Band Photoluminescence in CuInS2 Nanocrystals [J].
van der Stam, Ward ;
de Graaf, Max ;
Gudjonsdottir, Solrun ;
Geuchies, Jaco J. ;
Dijkema, Jurgen J. ;
Kirkwood, Nicholas ;
Evers, Wiel H. ;
Longo, Alessandro ;
Houtepen, Arjan J. .
ACS NANO, 2018, 12 (11) :11244-11253