SASiamNet: Self-Adaptive Siamese Network for Change Detection of Remote Sensing Image

被引:6
作者
Long, Xianxuan [1 ]
Zhuang, Wei [1 ]
Xia, Min [1 ]
Hu, Kai [1 ]
Lin, Haifeng [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equipm, B DAT, Nanjing 210044, Peoples R China
[2] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210000, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Remote sensing; Task analysis; Deep learning; Training; Semantics; Image edge detection; Change detection; deep learning; remote sensing; Siamese network;
D O I
10.1109/JSTARS.2023.3330753
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With increasingly rapid development of convolutional neural networks, the field of remote sensing has experienced a significant revitalization. However, understanding and detecting surface changes, which necessitate the identification of high-resolution remote sensing images, remain substantial challenges in achieving precise change detection. Excited deep learning-based change detection techniques often exhibit limitations and lack the necessary precision to detect edge details or other nuanced information in remote sensing images. To address these limitations, we propose a unique semantic segmentation deep learning network, the self-adaptive Siamese network (SASiamNet), specifically devised for enhancing change detection in remote sensing images. The SASiamNet excels in real-time land cover segmentation, adeptly extracting local and global information from images via the backbone residual network. Furthermore, it incorporates a primary feature fusion module to extract and fuse the primary stage feature map, and a high-level information refinement module to refine the resultant feature map. This methodology effectively transmutes low-level semantic information into high-level semantic information, thereby improving the overall detection process. Aimed at empirically testing the effectiveness of the SASiamNet, we utilize two distinct datasets: the public dataset, LEVIR-CD, and a challenging dataset, CDD. The latter is composed of bitemporal images sourced from Google Earth, spanning various regions across China. The experiment results unequivocally demonstrate that our approach outperforms traditional methodologies as well as contemporary state-of-the-art change detection techniques, hence underscoring the efficacy of the SASiamNet in the context of remote sensing image change detection.
引用
收藏
页码:1021 / 1034
页数:14
相关论文
共 50 条
  • [41] Prior Guidance and Principal Attention Network for Remote Sensing Image Change Detection
    Shu, Qing-Ling
    Chen, Si-Bao
    You, Zhi-Hui
    Tang, Jin
    Luo, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [42] PSTNet: Progressive Sampling Transformer Network for Remote Sensing Image Change Detection
    Song, Xinyang
    Hua, Zhen
    Li, Jinjiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8442 - 8455
  • [43] Bitemporal Remote Sensing Image Change Detection Network Based on Siamese-Attention Feedback Architecture
    Yin, Hongyang
    Ma, Chong
    Weng, Liguo
    Xia, Min
    Lin, Haifeng
    REMOTE SENSING, 2023, 15 (17)
  • [44] Spatial Focused Bitemporal Interactive Network for Remote Sensing Image Change Detection
    Sun, Hang
    Yao, Yuan
    Zhang, Lefei
    Ren, Dong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [45] IA-CDNet: Change Detection in Adverse Remote Sensing Image Conditions With an Advanced Image-Adaptive Method
    Wang, Zhipan
    Yang, Zijun
    Zhang, Qingling
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [46] CSTSUNet: A Cross Swin Transformer-Based Siamese U-Shape Network for Change Detection in Remote Sensing Images
    Wu, Yaping
    Li, Lu
    Wang, Nan
    Li, Wei
    Fan, Junfang
    Tao, Ran
    Wen, Xin
    Wang, Yanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [47] CHANGE DETECTION FROM UNLABELED REMOTE SENSING IMAGES USING SIAMESE ANN
    Hedjam, Rachid
    Abdesselam, Abdelhamid
    Melgani, Farid
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1530 - 1533
  • [48] An Enhanced and Unsupervised Siamese Network With Superpixel-Guided Learning for Change Detection in Heterogeneous Remote Sensing Images
    Ji, Zhiyuan
    Wang, Xueqian
    Wang, Zhihao
    Li, Gang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 19451 - 19466
  • [49] SAUNet3+CD: A Siamese-Attentive UNet3+for Change Detection in Remote Sensing Images
    Mo, Junsang
    Seong, Seonkyeong
    Oh, Jaehong
    Choi, Jaewan
    IEEE ACCESS, 2022, 10 : 101434 - 101444
  • [50] OctaveNet: An efficient multi-scale pseudo-siamese network for change detection in remote sensing images
    Farhadi N.
    Kiani A.
    Ebadi H.
    Multimedia Tools and Applications, 2024, 83 (36) : 83941 - 83961