In this work, we employed the hydrothermal technique to synthesize analcime nanoparticles under two conditions: one without the presence of polyvinylpyrrolidone (referred to as NF) and the other with varying amounts of polyvinylpyrrolidone (0.5 g, 0.75 g, and 1 g, abbreviated as N0.5, N0.75, and N1, respectively) acting as an organic template. The average crystallite size of the NF, N0.5, N0.75, and N1 samples is 150.83, 68.25, 58.13, and 46.46 nm, respectively. Additionally, the BET surface area of the NF, N0.5, N0.75, and N1 samples is 17.61, 40.68, 48.46, and 55.83 m2/g, respectively. Additionally, the synthesized analcime nanoparticles proved to be effective in the removal of Pb(II) and Cu(II) ions from aqueous solutions. The removal process followed a chemical and spontaneous mechanism and characterized by adherence to the pseudo-second-order kinetic model and Langmuir isotherm. The maximum adsorption capacity of the NF, N0.5, N0.75, and N1 samples towards Pb(II) ions is 108.23, 184.84, 204.08, and 233.10 mg/g, respectively. Besides, the maximum adsorption capacity of the NF, N0.5, N0.75, and N1 samples towards Cu(II) ions is 127.71, 210.08, 226.24, and 246.91 mg/g, respectively.