Coherent Springer theory and the categorical Deligne-Langlands correspondence

被引:2
作者
Ben-Zvi, David [1 ]
Chen, Harrison [2 ]
Helm, David [3 ]
Nadler, David [4 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
[2] Acad Sinica, Inst Math, Taipei 106319, Taiwan
[3] Imperial Coll, Dept Math, London SW7 2BU, England
[4] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
英国工程与自然科学研究理事会;
关键词
INTEGRAL-TRANSFORMS; DEFORMATION RINGS; REPRESENTATIONS; ALGEBRA; SHEAVES; TRACES;
D O I
10.1007/s00222-023-01224-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kazhdan and Lusztig identified the affine Hecke algebra H with an equivariant K-group of the Steinberg variety, and applied this to prove the Deligne-Langlands conjecture, i.e., the local Langlands parametrization of irreducible representations of reductive groups over nonarchimedean local fields F with an Iwahori-fixed vector. We apply techniques from derived algebraic geometry to pass from K-theory to Hochschild homology and thereby identify H with the endomorphisms of a coherent sheaf on the stack of unipotent Langlands parameters, the coherent Springer sheaf. As a result the derived category of H-modules is realized as a full subcategory of coherent sheaves on this stack, confirming expectations from strong forms of the local Langlands correspondence (including recent conjectures of Fargues-Scholze, Hellmann and Zhu). In the case of the general linear group our result allows us to lift the local Langlands classification of irreducible representations to a categorical statement: we construct a full embedding of the derived category of smooth representations of GL(n)(F) into coherent sheaves on the stack of Langlands parameters.
引用
收藏
页码:255 / 344
页数:90
相关论文
共 84 条
  • [1] [Anonymous], 2006, PROCEEDING INT C MAT
  • [2] Singular support of coherent sheaves and the geometric Langlands conjecture
    Arinkin, D.
    Gaitsgory, D.
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2015, 21 (01): : 1 - 199
  • [3] Arinkin D., 2020, PREPRINT
  • [4] Perverse sheaves on affine flags and langlands dual group
    Arkhipov, Sergey
    Bezrukavnikov, Roman
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2009, 170 (01) : 135 - 183
  • [5] Aubert A.-M., 2017, ADIC GROUPS THEIR NO
  • [6] G-valued local deformation rings and global lifts
    Bellovin, Rebecca
    Gee, Toby
    [J]. ALGEBRA & NUMBER THEORY, 2019, 13 (02) : 333 - 378
  • [7] Ben-Zvi D., 2023, IN PRESS
  • [8] Ben-Zvi D., 2012, MORITA EQUIVALENCE C
  • [9] Ben-Zvi D., 2021, NONLINEAR TRACES DER, P39
  • [10] Ben-Zvi D., 2015, PREPRINT