The art of centering without centering for robust principal component analysis

被引:0
作者
Wan, Guihong [1 ,2 ]
He, Baokun [3 ]
Schweitzer, Haim [3 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Boston, MA 02115 USA
[2] Harvard TH Chan Sch Publ Hlth, Dept Biostat & Epidemiol, Boston, MA 02115 USA
[3] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75080 USA
关键词
Principal component analysis; Robust subspace recovery; Bias; Centering; Outlier detection; Dimensionality reduction;
D O I
10.1007/s10618-023-00976-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many robust variants of Principal Component Analysis remove outliers from the data and compute the principal components of the remaining data. The robust centered variant requires knowledge of the center of the non-outliers. Unfortunately, the center of non-outliers is unknown until after the outliers are determined, and using an inaccurate center may lead to the detection of wrong outliers. We demonstrate this problem in several known robust PCA algorithms. We describe a method that implicitly centers the non-outliers, implemented by appending a constant value (bias) to each data point. This bias method can be used with "black box" robust PCA algorithms by augmenting their input with minimal change to the algorithm itself.
引用
收藏
页码:699 / 724
页数:26
相关论文
共 32 条
[1]  
[Anonymous], 2017, ACM Trans. Math. Software
[2]  
Asuncion A., 2010, UCI machine learning repository, V213
[3]   Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset [J].
Bouwmans, Thierry ;
Sobral, Andrews ;
Javed, Sajid ;
Jung, Soon Ki ;
Zahzah, El-Hadi .
COMPUTER SCIENCE REVIEW, 2017, 23 :1-71
[4]   Dimension Reduction: A Guided Tour [J].
Burges, Christopher J. C. .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2010, 2 (04) :275-365
[5]  
Cadima J, 2009, PAK J STAT, V25, P473
[6]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[7]   On the Complexity of Robust PCA and l1-Norm Low-Rank Matrix Approximation [J].
Gillis, Nicolas ;
Vavasis, Stephen A. .
MATHEMATICS OF OPERATIONS RESEARCH, 2018, 43 (04) :1072-1084
[8]  
Golub GH., 2013, Matrix Computations, V4
[9]  
Gray V, 2017, Appl Technol Math Res Dev
[10]   Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions [J].
Halko, N. ;
Martinsson, P. G. ;
Tropp, J. A. .
SIAM REVIEW, 2011, 53 (02) :217-288