Chemotherapy-induced nanovaccines implement immunogenicity equivalence for improving cancer chemoimmunotherapy

被引:14
作者
Li, Rui [1 ]
Hao, Yuhao [1 ]
Roche, Kyle [4 ]
Chen, Guiyuan [1 ]
Pan, Wen [1 ]
Wang, Andrew Z. [5 ]
Min, Yuanzeng [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Dept Chem, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Affiliated Hosp USTC 1, Anhui Prov Hosp, Div Life Sci & Med, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Key Lab Soft Matter Chem, Hefei 230026, Peoples R China
[4] George Washington Univ, Sch Med & Hlth Sci, Washington, DC 20052 USA
[5] Univ Texas Southwestern Med Ctr, Dept Radiat Oncol, Dallas, TX 75390 USA
基金
中国国家自然科学基金;
关键词
Chemoimmunotherapy; Nanovaccines; Neoantigens; Damage associated molecular patterns; Anti-PD-1; SQUAMOUS-CELL CARCINOMA; DOUBLE-BLIND; NIVOLUMAB; RECURRENT; PEMBROLIZUMAB; CARBOPLATIN; IMMUNOLOGY; PACLITAXEL; ANTIGEN; TRIAL;
D O I
10.1016/j.biomaterials.2023.122290
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Several chemoimmunotherapies have been approved by the FDA for the treatment of various cancers. Chemotherapy has the potential to improve the efficacy of immunotherapy by inducing immunogenic cell death (ICD) of tumor cells, promoting the release of tumor associated antigens (TAAs), tumor specific antigens (TSAs) and damage associated molecular patterns (DAMPs), and disrupting immunosuppressive microenvironments by tumor debulking. Unfortunately, systemic administration of chemotherapeutics carries side effects of blunting anti-cancer immune response through systemic immunosuppression, which deserves to be explored as an inner contradiction in chemoimmunotherapy. Here, we proposed the hypothesis of "immunogenicity equivalence" in chemoimmunotherapy that chemotherapeutics-induced immunogenic antigens and DAMPs in vitro that can subsequently be incorporated into nanovaccines, which will possess comparable immunostimulatory potential when compared to tumors treated with systemic chemotherapy in vivo. The proteomic analysis confirmed that our nanovaccines contained TAAs, TSAs and DAMPs. Improvement in treatment outcomes in tumor-bearing mice receiving anti-PD-1 and chemotherapy-induced nanovaccines was then observed. Furthermore, we demonstrated the feasibility of replacing long-term chemotherapy with nanovaccines in chemoimmunotherapy. Our nano vaccine strategy would be a general choice for formulating cancer vaccines in personalized medicine.
引用
收藏
页数:13
相关论文
共 51 条
[1]   Radiotherapy and Immunotherapy for Cancer: From "Systemic" to "Multisite" [J].
Arina, Ainhoa ;
Gutiontov, Stanley I. ;
Weichselbaum, Ralph R. .
CLINICAL CANCER RESEARCH, 2020, 26 (12) :2777-2782
[2]   Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns [J].
Bachmann, Martin F. ;
Jennings, Gary T. .
NATURE REVIEWS IMMUNOLOGY, 2010, 10 (11) :787-796
[3]   A vaccine targeting resistant tumours by dual T cell plus NK cell attack [J].
Badrinath, Soumya ;
Dellacherie, Maxence O. ;
Li, Aileen ;
Zheng, Shiwei ;
Zhang, Xixi ;
Sobral, Miguel ;
Pyrdol, Jason W. ;
Smith, Kathryn L. ;
Lu, Yuheng ;
Haag, Sabrina ;
Ijaz, Hamza ;
Connor-Stroud, Fawn ;
Kaisho, Tsuneyasu ;
Dranoff, Glenn ;
Yuan, Guo-Cheng ;
Mooney, David J. ;
Wucherpfennig, Kai W. .
NATURE, 2022, 606 (7916) :992-+
[4]   Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study [J].
Burtness, Barbara ;
Harrington, Kevin J. ;
Greil, Richard ;
Soulieres, Denis ;
Tahara, Makoto ;
de Castro, Gilberto, Jr. ;
Psyrri, Amanda ;
Baste, Neus ;
Neupane, Prakash ;
Bratland, Ase ;
Fuereder, Thorsten ;
Hughes, Brett G. M. ;
Mesia, Ricard ;
Ngamphaiboon, Nuttapong ;
Rordorf, Tamara ;
Ishak, Wan Zamaniah Wan ;
Hong, Ruey-Long ;
Mendoza, Rene Gonzalez ;
Roy, Ananya ;
Zhang, Yayan ;
Gumuscu, Burak ;
Cheng, Jonathan D. ;
Jin, Fan ;
Rischin, Danny .
LANCET, 2019, 394 (10212) :1915-1928
[5]   Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma [J].
Castle, John C. ;
Loewer, Martin ;
Boegel, Sebastian ;
de Graaf, Jos ;
Bender, Christian ;
Tadmor, Arbel D. ;
Boisguerin, Valesca ;
Bukur, Thomas ;
Sorn, Patrick ;
Paret, Claudia ;
Diken, Mustafa ;
Kreiter, Sebastian ;
Tureci, Ozlem ;
Sahin, Ugur .
BMC GENOMICS, 2014, 15
[6]   Oncology Meets Immunology: The Cancer-Immunity Cycle [J].
Chen, Daniel S. ;
Mellman, Ira .
IMMUNITY, 2013, 39 (01) :1-10
[7]   Cryo-shocked cancer cells for targeted drug delivery and vaccination [J].
Ci, Tianyuan ;
Li, Hongjun ;
Chen, Guojun ;
Wang, Zejun ;
Wang, Jinqiang ;
Abdou, Peter ;
Tu, Yiming ;
Dotti, Gianpietro ;
Gu, Zhen .
SCIENCE ADVANCES, 2020, 6 (50)
[8]  
Cortes J, 2020, LANCET, V396, P1817, DOI 10.1016/S0140-6736(20)32531-9
[9]   MICA/B antibody induces macrophage-mediated immunity against acute myeloid leukemia [J].
da Silva, Pedro Henrique Alves ;
Xing, Samantha ;
Kotini, Andriana G. ;
Papapetrou, Eirini P. ;
Song, Xiaoyu ;
Wucherpfennig, Kai W. ;
Mascarenhas, John ;
de Andrade, Lucas Ferrari .
BLOOD, 2022, 139 (02) :205-216
[10]   Organoids in cancer research [J].
Drost, Jarno ;
Clevers, Hans .
NATURE REVIEWS CANCER, 2018, 18 (07) :407-418