On a class of interpolation inequalities on the 2D sphere

被引:0
|
作者
Zelik, S. V. [1 ,2 ]
Ilyin, A. A. [3 ]
机构
[1] Univ Surrey, Dept Math, Guildford, Surrey, England
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou, Peoples R China
[3] Russian Acad Sci, Keldysh Inst Appl Math, Moscow, Russia
关键词
Gagliardo-Nirenberg inequalities; sphere; orthonormal systems; SOBOLEV INEQUALITIES; SHARP; ASYMPTOTICS; CONSTANTS; EQUATIONS; MANIFOLDS; SYSTEM; LIEB;
D O I
10.4213/sm9786e
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove estimates for the L-p-norms of systems of functions and divergence-free vector functions that are orthonormal in the Sobolev space H-1 on the 2D sphere. As a corollary, order sharp constants for the embedding H1 hooked right arrow L-q, q < infinity, are obtained in the Gagliardo-Nirenberg interpolation inequalities.
引用
收藏
页码:396 / 410
页数:15
相关论文
共 50 条
  • [31] Weighted interpolation inequalities: a perturbation approach
    Dolbeault, Jean
    Muratori, Matteo
    Nazaret, Bruno
    MATHEMATISCHE ANNALEN, 2017, 369 (3-4) : 1237 - 1270
  • [32] The stability of a class of 2D non-newtonian fluid equations with unbounded delays
    Liu, Guowei
    Yi, Luyan
    Zhao, Caidi
    APPLICABLE ANALYSIS, 2024, 103 (12) : 2224 - 2240
  • [33] SHARP SOBOLEV INEQUALITIES ON THE COMPLEX SPHERE
    Han, Yazhou
    Zhang, Shutao
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (01): : 149 - 159
  • [34] ON THE MIXED (l1, l2)-LITTLEWOOD INEQUALITIES AND INTERPOLATION
    Maia, Mariana
    Santos, Joedson
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (03): : 721 - 727
  • [35] VORTICITY CONVERGENCE FROM BOLTZMANN TO 2D INCOMPRESSIBLE EULER EQUATIONS BELOW YUDOVICH CLASS
    Kim, Chanwoo
    La, Joonhyun
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (03) : 3144 - 3202
  • [36] Finite Fractal Dimensional Pullback Attractors for a Class of 2D Magneto-Viscoelastic Flows
    Ai, Chengfei
    Shen, Jun
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (01)
  • [37] A numerical technique for a class of nonlinear fractional 2D Volterra integro-differential equations
    Afiatdoust, F.
    Heydari, M. H.
    Hosseini, M. M.
    Moghadam, M. Mohseni
    RESULTS IN APPLIED MATHEMATICS, 2024, 24
  • [38] FRACTIONAL SOBOLEV INEQUALITIES: SYMMETRIZATION, ISOPERIMETRY AND INTERPOLATION
    Martin, Jaoquim
    Milman, Mario
    ASTERISQUE, 2014, (366) : 1 - +
  • [39] Sharp interpolation inequalities for discrete operators and applications
    Ilyin, Alexei
    Laptev, Ari
    Zelik, Sergey
    BULLETIN OF MATHEMATICAL SCIENCES, 2015, 5 (01) : 19 - 57
  • [40] Sobolev inequalities, rearrangements, isoperimetry and interpolation spaces
    Martin, Joaquim
    Milman, Mario
    CONCENTRATION, FUNCTIONAL INEQUALITIES AND ISOPERIMETRY, 2011, 545 : 167 - +