共 50 条
On a class of interpolation inequalities on the 2D sphere
被引:0
|作者:
Zelik, S. V.
[1
,2
]
Ilyin, A. A.
[3
]
机构:
[1] Univ Surrey, Dept Math, Guildford, Surrey, England
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou, Peoples R China
[3] Russian Acad Sci, Keldysh Inst Appl Math, Moscow, Russia
关键词:
Gagliardo-Nirenberg inequalities;
sphere;
orthonormal systems;
SOBOLEV INEQUALITIES;
SHARP;
ASYMPTOTICS;
CONSTANTS;
EQUATIONS;
MANIFOLDS;
SYSTEM;
LIEB;
D O I:
10.4213/sm9786e
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove estimates for the L-p-norms of systems of functions and divergence-free vector functions that are orthonormal in the Sobolev space H-1 on the 2D sphere. As a corollary, order sharp constants for the embedding H1 hooked right arrow L-q, q < infinity, are obtained in the Gagliardo-Nirenberg interpolation inequalities.
引用
收藏
页码:396 / 410
页数:15
相关论文