On a class of interpolation inequalities on the 2D sphere

被引:0
|
作者
Zelik, S. V. [1 ,2 ]
Ilyin, A. A. [3 ]
机构
[1] Univ Surrey, Dept Math, Guildford, Surrey, England
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou, Peoples R China
[3] Russian Acad Sci, Keldysh Inst Appl Math, Moscow, Russia
关键词
Gagliardo-Nirenberg inequalities; sphere; orthonormal systems; SOBOLEV INEQUALITIES; SHARP; ASYMPTOTICS; CONSTANTS; EQUATIONS; MANIFOLDS; SYSTEM; LIEB;
D O I
10.4213/sm9786e
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove estimates for the L-p-norms of systems of functions and divergence-free vector functions that are orthonormal in the Sobolev space H-1 on the 2D sphere. As a corollary, order sharp constants for the embedding H1 hooked right arrow L-q, q < infinity, are obtained in the Gagliardo-Nirenberg interpolation inequalities.
引用
收藏
页码:396 / 410
页数:15
相关论文
共 50 条