Predicting brain metabolism in elderly patients with cognitive impairment using deep learning

被引:0
|
作者
Doering, E. [1 ]
Deusser, T. [2 ]
Hoenig, M. [3 ]
Bischof, G. [4 ]
Van Eimeren, T. [4 ]
Drzezga, A. [4 ]
Ellingsen, L. [5 ]
机构
[1] German Centern Neurodegenerat Dis DZNE, Gottingen, Germany
[2] Univ Bonn, Bonn, Germany
[3] Res Ctr Julich, Julich, Germany
[4] Univ Hosp Cologne, Cologne, Germany
[5] Univ Iceland, Reykjavik, Iceland
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
EPO-565
引用
收藏
页码:677 / 678
页数:2
相关论文
共 50 条
  • [41] Deep Learning Prediction of Mild Cognitive Impairment using Electronic Health Records
    Fouladvand, Sajjad
    Mielke, Michelle M.
    Vassilaki, Maria
    St Sauver, Jennifer
    Petersen, Ronald C.
    Sohn, Sunghwan
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 799 - 806
  • [42] Deep Learning Models for the Screening of Cognitive Impairment Using Multimodal Fundus Images
    Shi, Xu Han
    Ju, Lie
    Dong, Li
    Zhang, Rui Heng
    Shao, Lei
    Yan, Yan Ni
    Wang, Ya Xing
    Fu, Xue Fei
    Chen, Yu Zhong
    Ge, Zong Yuan
    Wei, Wen Bin
    OPHTHALMOLOGY RETINA, 2024, 8 (07): : 666 - 677
  • [43] Cognitive Impairment After Deep Brain Stimulation Surgery
    Simsek, Hakan
    Anderson, William S.
    NEUROSURGERY, 2015, 77 (02) : N12 - N13
  • [44] Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach
    Jun Pyo Kim
    Jonghoon Kim
    Hyemin Jang
    Jaeho Kim
    Sung Hoon Kang
    Ji Sun Kim
    Jongmin Lee
    Duk L. Na
    Hee Jin Kim
    Sang Won Seo
    Hyunjin Park
    Scientific Reports, 11
  • [45] A Pilot Study on the Cutoff Value of Related Brain Metabolite in Chinese Elderly Patients With Mild Cognitive Impairment Using MRS
    Zhao, Lihua
    Teng, Jinlong
    Mai, Wei
    Su, Jiahui
    Yu, Bihan
    Nong, Xiucheng
    Li, Chong
    Wei, Yichen
    Duan, Gaoxiong
    Deng, Xiangming
    Deng, Demao
    Chen, Shangjie
    FRONTIERS IN AGING NEUROSCIENCE, 2021, 13
  • [46] Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach
    Kim, Jun Pyo
    Kim, Jonghoon
    Jang, Hyemin
    Kim, Jaeho
    Kang, Sung Hoon
    Kim, Ji Sun
    Lee, Jongmin
    Na, Duk L.
    Kim, Hee Jin
    Seo, Sang Won
    Park, Hyunjin
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [47] Predicting cognitive impairment in multiple sclerosis: between cognitive reserve and brain volume
    Machado, R.
    Lima, C.
    D'almeida, O. C.
    Afonso, A.
    Macario, C.
    Castelo-Branco, M. L.
    Sousa, L.
    Santana, I.
    Batista, S.
    MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (2_SUPPL) : 15 - 16
  • [48] Anatomically interpretable deep learning of brain age captures domain-specific cognitive impairment
    Yin, Chenzhong
    Imms, Phoebe
    Cheng, Mingxi
    Amgalan, Anar
    Chowdhury, Nahian F.
    Massett, Roy J.
    Chaudhari, Nikhil N.
    Chen, Xinghe
    Thompson, Paul M.
    Bogdan, Paul
    Irimia, Andrei
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (02)
  • [49] Study of assessment of cognitive ability of human brain using deep learning
    Sinha G.R.
    International Journal of Information Technology, 2017, 9 (3) : 321 - 326
  • [50] A Study Of Clinical And Mri Brain Correlates Of Cognitive Impairment In Post-Stroke Elderly Patients
    Behere, Nilam S.
    Parkar, Shubhangi R.
    Sankhe, Shilpa
    INDIAN JOURNAL OF PSYCHIATRY, 2018, 60 (05) : 92 - 93