CyFormer: Accurate State-of-Health Prediction of Lithium-Ion Batteries via Cyclic Attention

被引:1
|
作者
Nie, Zhiqiang [1 ]
Zhao, Jiankun [2 ]
Li, Qicheng [2 ]
Qin, Yong [2 ]
机构
[1] Nankai Univ, Coll Cyber Sci, Tianjin, Peoples R China
[2] Nankai Univ, Coll Comp Sci, Tianjin, Peoples R China
关键词
SoH; time sequence; transformer; cyclic attention; transfer learning; CHARGE ESTIMATION; MODEL;
D O I
10.1109/IJCNN54540.2023.10191180
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting the State-of-Health (SoH) of lithium-ion batteries is a fundamental task of battery management systems on electric vehicles. It aims at estimating future SoH based on historical aging data. Most existing deep learning methods rely on filter-based feature extractors (e.g., CNN or Kalman filters) and recurrent time sequence models. Though efficient, they generally ignore cyclic features and the domain gap between training and testing batteries. To address this problem, we present CyFormer, a transformer-based cyclic time sequence model for SoH prediction. Instead of the conventional CNN-RNN structure, we adopt an encoder-decoder architecture. In the encoder, rowwise and column-wise attention blocks effectively capture intracycle and inter-cycle connections and extract cyclic features. In the decoder, the SoH queries cross-attend to these features to form the final predictions. We further utilize a transfer learning strategy to narrow the domain gap between the training and testing set. To be specific, we use fine-tuning to shift the model to a target working condition. Finally, we made our model more efficient by pruning. The experiment shows that our method attains an MAE of 0.75% with only 10% data for fine-tuning on a testing battery, surpassing prior methods by a large margin. Effective and robust, our method provides a potential solution for all cyclic time sequence prediction tasks.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Time Series Feature extraction for Lithium-Ion batteries State-Of-Health prediction
    Jorge, Ines
    Mesbahi, Tedjani
    Samet, Ahmed
    Bone, Romuald
    JOURNAL OF ENERGY STORAGE, 2023, 59
  • [2] State-of-Health Prediction for Lithium-Ion Batteries Based on a Novel Hybrid Approach
    Yun, Zhonghua
    Qin, Wenhu
    Shi, Weipeng
    Ping, Peng
    ENERGIES, 2020, 13 (18)
  • [3] Perspective on State-of-Health Determination in Lithium-Ion Batteries
    Dubarry, Matthieu
    Baure, George
    Ansean, David
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2020, 17 (04)
  • [4] Protocol for state-of-health prediction of lithium-ion batteries based on machine learning
    Shu, Xing
    Shen, Shiquan
    Shen, Jiangwei
    Zhang, Yuanjian
    Li, Guang
    Chen, Zheng
    Liu, Yonggang
    STAR PROTOCOLS, 2022, 3 (02):
  • [5] Online state-of-health prediction of lithium-ion batteries with limited labeled data
    Yu, Jinsong
    Yang, Jie
    Wu, Yao
    Tang, Diyin
    Dai, Jing
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (14) : 11345 - 11353
  • [6] State-of-Health Estimation of Lithium-ion Batteries Based on CNN-LSTM-Attention
    Ding, Dong
    Mao, Songheng
    Fan, Yuan
    2024 3RD CONFERENCE ON FULLY ACTUATED SYSTEM THEORY AND APPLICATIONS, FASTA 2024, 2024, : 837 - 842
  • [7] State-of-health prediction for lithium-ion batteries via electrochemical impedance spectroscopy and artificial neural networks
    Li, Yige
    Dong, Bo
    Zerrin, Taner
    Jauregui, Evan
    Wang, Xichao
    Hua, Xia
    Ravichandran, Dwaraknath
    Shang, Ruoxu
    Xie, Jia
    Ozkan, Mihrimah
    Ozkan, Cengiz S.
    ENERGY STORAGE, 2020, 2 (05)
  • [8] Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation
    Wang, Huan
    Li, Yan-Fu
    Zhang, Ying
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 188
  • [9] State-of-Health Prediction of Lithium-Ion Batteries Based on Diffusion Model with Transfer Learning
    Luo, Chenqiang
    Zhang, Zhendong
    Zhu, Shunliang
    Li, Yongying
    ENERGIES, 2023, 16 (09)
  • [10] State-of-Health Prediction of Lithium-Ion Batteries Based on CNN-BiLSTM-AM
    Tian, Yukai
    Wen, Jie
    Yang, Yanru
    Shi, Yuanhao
    Zeng, Jianchao
    BATTERIES-BASEL, 2022, 8 (10):