3D-printed placental-derived bioinks for skin tissue regeneration with improved angiogenesis and wound healing properties

被引:40
作者
Bashiri, Zahra [1 ,2 ]
Fomeshi, Motahareh Rajabi [3 ,4 ]
Hamidabadi, Hatef Ghasemi [5 ,6 ]
Jafari, Davod [7 ]
Alizadeh, Sanaz [3 ,4 ]
Bojnordi, Maryam Nazm [5 ,6 ]
Orive, Gorka [8 ,9 ,10 ,11 ,12 ]
Dolatshahi-Pirouz, Alireza [13 ]
Zahiri, Maria [14 ,15 ]
Reis, Rui L. [16 ]
Kundu, Subhas C. [16 ]
Gholipourmalekabadi, Mazaher [3 ,4 ,7 ,17 ]
机构
[1] Iran Univ Med Sci, Sch Med, Dept Anat, Tehran, Iran
[2] Omid Fertil & Infertil Clin, Hamadan, Iran
[3] Iran Univ Med Sci, Cellular & Mol Res Ctr, Tehran, Iran
[4] Iran Univ Med Sci, Fac Adv Technol Med, Dept Tissue Engn & Regenerat Med, Tehran, Iran
[5] Mazandaran Univ Med Sci, Fac Med, Dept Anat & Cell Biol, Sari, Iran
[6] Mazandaran Univ Med Sci, Fac Med, Immunogenet Res Ctr, Dept Anat & Cell Biol, Sari, Iran
[7] Iran Univ Med Sci, Fac Allied Med, Dept Med Biotechnol, Tehran, Iran
[8] Univ Basque Country UPV EHU, Sch Pharm, NanoBioCel Res Grp, Vitoria 01006, Spain
[9] Bioaraba, NanoBioCel Res Grp, Vitoria 01009, Spain
[10] Inst Hlth Carlos III, Biomed Res Networking Ctr Bioengn Biomat & Nanomed, Av Monforte Lemos 3-5, Madrid 28029, Spain
[11] UPV EHU Fdn Eduardo Anitua, Univ Inst Regenerat Med & Oral Implantol UIRMI, Vitoria 01007, Spain
[12] Singapore Eye Res Inst, 20 Coll Rd,Discovery Tower, Singapore 169856, Singapore
[13] Tech Univ Denmark, Dept Hlth Technol, DK-2800 Lyngby, Denmark
[14] Bushehr Univ Med Sci, Persian Gulf Biomed Sci Res Inst, Persian Gulf Marine Biotechnol Res Ctr, Bushehr, Iran
[15] Bushehr Univ Med Sci, Sch Med Sci, Dept Anat Sci, Bushehr, Iran
[16] Univ Minho, I3Bs Res Inst Biomat Biodegradable & Biomimet, Headquarters European Inst Excellence Tissue Engn, Res Grp 3Bs, Guimaraes, Portugal
[17] Iran Univ Med Sci, Fac Allied Med, Dept Med Biotechnol, Tehran 1449614535, Iran
关键词
Placenta; Extracellular matrix; ECM bioink; Alginate; gelatin; 3D printed scaffold; Wound healing; EXTRACELLULAR-MATRIX; ADIPOSE-TISSUE; STEM-CELLS; IN-VITRO; SCAFFOLDS; REPAIR; ORGAN; VASCULARIZATION; FABRICATION; STRATEGIES;
D O I
10.1016/j.mtbio.2023.100666
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Extracellular matrix (ECM)-based bioinks has attracted much attention in recent years for 3D printing of native-like tissue constructs. Due to organ unavailability, human placental ECM can be an alternative source for the construction of 3D print composite scaffolds for the treatment of deep wounds. In this study, we use different concentrations (1.5%, 3% and 5%w/v) of ECM derived from the placenta, sodium-alginate and gelatin to prepare a printable bioink biomimicking natural skin. The printed hydrogels' morphology, physical structure, mechanical behavior, biocompatibility, and angiogenic property are investigated. The optimized ECM (5%w/v) 3D printed scaffold is applied on full-thickness wounds created in a mouse model. Due to their unique native-like structure, the ECM-based scaffolds provide a non-cytotoxic microenvironment for cell adhesion, infiltration, angiogenesis, and proliferation. In contrast, they do not show any sign of immune response to the host. Notably, the biodeg-radation, swelling rate, mechanical property, cell adhesion and angiogenesis properties increase with the increase of ECM concentrations in the construct. The ECM 3D printed scaffold implanted into deep wounds increases granulation tissue formation, angiogenesis, and re-epithelialization due to the presence of ECM components in the construct, when compared with printed scaffold with no ECM and no treatment wound. Overall, our findings demonstrate that the 5% ECM 3D scaffold supports the best deep wound regeneration in vivo, produces a skin replacement with a cellular structure comparable to native skin.
引用
收藏
页数:18
相关论文
共 99 条
[21]   An overview of tissue and whole organ decellularization processes [J].
Crapo, Peter M. ;
Gilbert, Thomas W. ;
Badylak, Stephen F. .
BIOMATERIALS, 2011, 32 (12) :3233-3243
[22]   Decellularized extracellular matrix bioinks and the external stimuli to enhance cardiac tissue development in vitro [J].
Das, Sanskrita ;
Kim, Seok-Won ;
Choi, Yeong-Jin ;
Lee, Sooyeon ;
Lee, Se-Hwan ;
Kong, Jeong-Sik ;
Park, Hun-Jun ;
Cho, Dong-Woo ;
Jang, Jinah .
ACTA BIOMATERIALIA, 2019, 95 :188-200
[23]  
David V.A.S., 2022, FRONT BIOENG BIOTECH, P10
[24]  
Dearman B.L., 2021, FRONT SURG, P362
[25]   Bioink derived from human placenta supporting angiogenesis [J].
Duan, Yongchao ;
Huang, Wenhui ;
Zhan, Bo ;
Li, Yuanyuan ;
Xu, Xue ;
Li, Kai ;
Li, Xia ;
Liu, Xin ;
Ding, Shenglong ;
Wang, Shuo ;
Guo, Jia ;
Wang, Yukai ;
Gu, Qi .
BIOMEDICAL MATERIALS, 2022, 17 (05)
[26]   In vitro and in vivo biocompatibility assessment of free radical scavenging nanocomposite scaffolds for bone tissue regeneration [J].
Dulany, Krista ;
Hepburn, Katie ;
Goins, Allison ;
Allen, Josephine B. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2020, 108 (02) :301-315
[27]   Decellularized Scaffolds for Skin Repair and Regeneration [J].
Dussoyer, Melissa ;
Michopoulou, Anna ;
Rousselle, Patricia .
APPLIED SCIENCES-BASEL, 2020, 10 (10)
[28]   Inflammation in wound repair: Molecular and cellular mechanisms [J].
Eming, Sabine A. ;
Krieg, Thomas ;
Davidson, Jeffrey M. .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2007, 127 (03) :514-525
[29]   Naturally Occurring Extracellular Matrix Scaffolds for Dermal Regeneration: Do They Really Need Cells? [J].
Eweida, A. M. ;
Marei, M. K. .
BIOMED RESEARCH INTERNATIONAL, 2015, 2015
[30]  
Farshi P., 2022, SCIENCE, V62, P2741