Multi-Label Retinal Disease Classification Using Transformers

被引:18
|
作者
Rodriguez, Manuel Alejandro [1 ]
AlMarzouqi, Hasan [1 ]
Liatsis, Panos [1 ]
机构
[1] Khalifa Univ, Dept Elect Engn & Comp Sci, Abu Dhabi 127788, U Arab Emirates
关键词
Multi-label; fundus imaging; disease classification; transformer; deep learning; BLOOD-VESSELS; IMAGES; ENSEMBLE;
D O I
10.1109/JBHI.2022.3214086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Early detection of retinal diseases is one of the most important means of preventing partial or permanent blindness in patients. In this research, a novel multi-label classification system is proposed for the detection of multiple retinal diseases, using fundus images collected from a variety of sources. First, a new multi-label retinal disease dataset, the MuReD dataset, is constructed, using a number of publicly available datasets for fundus disease classification. Next, a sequence of post-processing steps is applied to ensure the quality of the image data and the range of diseases, present in the dataset. For the first time in fundus multi-label disease classification, a transformer-based model optimized through extensive experimentation is used for image analysis and decision making. Numerous experiments are performed to optimize the configuration of the proposed system. It is shown that the approach performs better than state-of-the-art works on the same task by 7.9% and 8.1% in terms of AUC score for disease detection and disease classification, respectively. The obtained results further support the potential applications of transformer-based architectures in the medical imaging field.
引用
收藏
页码:2739 / 2750
页数:12
相关论文
共 50 条
  • [41] MULTI-LABEL TEXT CLASSIFICATION WITH A ROBUST LABEL DEPENDENT REPRESENTATION
    Alfaro, Rodrigo
    Allende, Hector
    2011 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, MEASUREMENT, CIRCUITS AND SYSTEMS (ICIMCS 2011), VOL 3: COMPUTER-AIDED DESIGN, MANUFACTURING AND MANAGEMENT, 2011, : 211 - 214
  • [42] Multi-label classification based on analog reasoning
    Nicolas, Ruben
    Sancho-Asensio, Andreu
    Golobardes, Elisabet
    Fornells, Albert
    Orriols-Puig, Albert
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (15) : 5924 - 5931
  • [43] Multi-label Active Learning for Image Classification
    Wu, Jian
    Sheng, Victor S.
    Zhang, Jing
    Zhao, Pengpeng
    Cui, Zhiming
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 5227 - 5231
  • [44] Multi-label Bird Species Classification Using Hierarchical Attention Framework
    Noumida, A.
    Rajan, Rajeev
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [45] Multi-label software requirement smells classification using deep learning
    Alem, Ashagrew Liyih
    Gebretsadik, Ketema Keflie
    Mengistie, Shegaw Anagaw
    Admas, Muluye Fentie
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [46] StaC: Stacked chaining for multi-label classification
    Mishra, Nitin Kumar
    Himthani, Puneet Kumar
    Singh, Pramod Kumar
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 219
  • [47] A Survey of Multi-label Text Classification Based on Deep Learning
    Chen, Xiaolong
    Cheng, Jieren
    Liu, Jingxin
    Xu, Wenghang
    Hua, Shuai
    Tang, Zhu
    Sheng, Victor S.
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT I, 2022, 13338 : 443 - 456
  • [48] Exploiting Label Dependency and Feature Similarity for Multi-Label Classification
    Nedungadi, Prema
    Haripriya, H.
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 2196 - 2200
  • [49] Multi-Label Classification of Historical Documents by Using Hierarchical Attention Networks
    Dong-Kyum Kim
    Byunghwee Lee
    Daniel Kim
    Hawoong Jeong
    Journal of the Korean Physical Society, 2020, 76 : 368 - 377
  • [50] Multi-Label Classification of Microblogging Texts Using Convolution Neural Network
    Parwez, Md Aslam
    Abulaish, Muhammad
    Jahiruddin
    IEEE ACCESS, 2019, 7 : 68678 - 68691