Multi-Label Retinal Disease Classification Using Transformers

被引:27
作者
Rodriguez, Manuel Alejandro [1 ]
AlMarzouqi, Hasan [1 ]
Liatsis, Panos [1 ]
机构
[1] Khalifa Univ, Dept Elect Engn & Comp Sci, Abu Dhabi 127788, U Arab Emirates
关键词
Multi-label; fundus imaging; disease classification; transformer; deep learning; BLOOD-VESSELS; IMAGES; ENSEMBLE;
D O I
10.1109/JBHI.2022.3214086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Early detection of retinal diseases is one of the most important means of preventing partial or permanent blindness in patients. In this research, a novel multi-label classification system is proposed for the detection of multiple retinal diseases, using fundus images collected from a variety of sources. First, a new multi-label retinal disease dataset, the MuReD dataset, is constructed, using a number of publicly available datasets for fundus disease classification. Next, a sequence of post-processing steps is applied to ensure the quality of the image data and the range of diseases, present in the dataset. For the first time in fundus multi-label disease classification, a transformer-based model optimized through extensive experimentation is used for image analysis and decision making. Numerous experiments are performed to optimize the configuration of the proposed system. It is shown that the approach performs better than state-of-the-art works on the same task by 7.9% and 8.1% in terms of AUC score for disease detection and disease classification, respectively. The obtained results further support the potential applications of transformer-based architectures in the medical imaging field.
引用
收藏
页码:2739 / 2750
页数:12
相关论文
共 63 条
[11]  
De K., 2013, Journal of Image and Graphics, V1, P39
[12]   TeleOphta: Machine learning and image processing methods for teleophthalmology [J].
Decenciere, E. ;
Cazuguel, G. ;
Zhang, X. ;
Thibault, G. ;
Klein, J. -C. ;
Meyer, F. ;
Marcotegui, B. ;
Quellec, G. ;
Lamard, M. ;
Danno, R. ;
Elie, D. ;
Massin, P. ;
Viktor, Z. ;
Erginay, A. ;
Lay, B. ;
Chabouis, A. .
IRBM, 2013, 34 (02) :196-203
[13]   FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE DATABASE: THE MESSIDOR DATABASE [J].
Decenciere, Etienne ;
Zhang, Xiwei ;
Cazuguel, Guy ;
Lay, Bruno ;
Cochener, Beatrice ;
Trone, Caroline ;
Gain, Philippe ;
Ordonez-Varela, John-Richard ;
Massin, Pascale ;
Erginay, Ali ;
Charton, Beatrice ;
Klein, Jean-Claude .
IMAGE ANALYSIS & STEREOLOGY, 2014, 33 (03) :231-234
[14]   Enhancement of blood vessels in digital fundus photographs via the application of multiscale line operators [J].
Farnell, D. J. J. ;
Hatfield, F. N. ;
Knox, P. ;
Reakes, M. ;
Spencer, S. ;
Parry, D. ;
Harding, S. P. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2008, 345 (07) :748-765
[15]   Blood vessel segmentation methodologies in retinal images - A survey [J].
Fraz, M. M. ;
Remagnino, P. ;
Hoppe, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. ;
Barman, S. A. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) :407-433
[16]   An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation [J].
Fraz, Muhammad Moazam ;
Remagnino, Paolo ;
Hoppe, Andreas ;
Uyyanonvara, Bunyarit ;
Rudnicka, Alicja R. ;
Owen, Christopher G. ;
Barman, Sarah A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (09) :2538-2548
[17]  
Gildenblat J., 2021, Pytorch library for cam methods
[18]  
github, HANSON0910 PYT RIADD
[19]   Multi-class multi-label ophthalmological disease detection using transfer learning based convolutional neural network [J].
Gour, Neha ;
Khanna, Pritee .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 66
[20]  
Han J, 2012, MOR KAUF D, P1