Multi-Label Retinal Disease Classification Using Transformers

被引:27
作者
Rodriguez, Manuel Alejandro [1 ]
AlMarzouqi, Hasan [1 ]
Liatsis, Panos [1 ]
机构
[1] Khalifa Univ, Dept Elect Engn & Comp Sci, Abu Dhabi 127788, U Arab Emirates
关键词
Multi-label; fundus imaging; disease classification; transformer; deep learning; BLOOD-VESSELS; IMAGES; ENSEMBLE;
D O I
10.1109/JBHI.2022.3214086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Early detection of retinal diseases is one of the most important means of preventing partial or permanent blindness in patients. In this research, a novel multi-label classification system is proposed for the detection of multiple retinal diseases, using fundus images collected from a variety of sources. First, a new multi-label retinal disease dataset, the MuReD dataset, is constructed, using a number of publicly available datasets for fundus disease classification. Next, a sequence of post-processing steps is applied to ensure the quality of the image data and the range of diseases, present in the dataset. For the first time in fundus multi-label disease classification, a transformer-based model optimized through extensive experimentation is used for image analysis and decision making. Numerous experiments are performed to optimize the configuration of the proposed system. It is shown that the approach performs better than state-of-the-art works on the same task by 7.9% and 8.1% in terms of AUC score for disease detection and disease classification, respectively. The obtained results further support the potential applications of transformer-based architectures in the medical imaging field.
引用
收藏
页码:2739 / 2750
页数:12
相关论文
共 63 条
[1]  
Abramoff Michael D, 2010, IEEE Rev Biomed Eng, V3, P169, DOI 10.1109/RBME.2010.2084567
[2]  
[Anonymous], 2019, Peking University International Competition on Ocular Disease Intelligent Recognition (ODIR-2019)
[3]   Application of deep learning for retinal image analysis: A review [J].
Badar, Maryam ;
Haris, Muhammad ;
Fatima, Anam .
COMPUTER SCIENCE REVIEW, 2020, 35
[4]   Learning multi-label scene classification [J].
Boutell, MR ;
Luo, JB ;
Shen, XP ;
Brown, CM .
PATTERN RECOGNITION, 2004, 37 (09) :1757-1771
[5]   Albumentations: Fast and Flexible Image Augmentations [J].
Buslaev, Alexander ;
Iglovikov, Vladimir I. ;
Khvedchenya, Eugene ;
Parinov, Alex ;
Druzhinin, Mikhail ;
Kalinin, Alexandr A. .
INFORMATION, 2020, 11 (02)
[6]   Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks [J].
Cen, Ling-Ping ;
Ji, Jie ;
Lin, Jian-Wei ;
Ju, Si-Tong ;
Lin, Hong-Jie ;
Li, Tai-Ping ;
Wang, Yun ;
Yang, Jian-Feng ;
Liu, Yu-Fen ;
Tan, Shaoying ;
Tan, Li ;
Li, Dongjie ;
Wang, Yifan ;
Zheng, Dezhi ;
Xiong, Yongqun ;
Wu, Hanfu ;
Jiang, Jingjing ;
Wu, Zhenggen ;
Huang, Dingguo ;
Shi, Tingkun ;
Chen, Binyao ;
Yang, Jianling ;
Zhang, Xiaoling ;
Luo, Li ;
Huang, Chukai ;
Zhang, Guihua ;
Huang, Yuqiang ;
Ng, Tsz Kin ;
Chen, Haoyu ;
Chen, Weiqi ;
Pang, Chi Pui ;
Zhang, Mingzhi .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]  
Charte F., 2013, P INT C HYBR ART INT
[8]   Addressing imbalance in multilabel classification: Measures and random resampling algorithms [J].
Charte, Francisco ;
Rivera, Antonio J. ;
del Jesus, Maria J. ;
Herrera, Francisco .
NEUROCOMPUTING, 2015, 163 :3-16
[9]   Superpixel Classification Based Optic Disc and Optic Cup Segmentation for Glaucoma Screening [J].
Cheng, Jun ;
Liu, Jiang ;
Xu, Yanwu ;
Yin, Fengshou ;
Wong, Damon Wing Kee ;
Tan, Ngan-Meng ;
Tao, Dacheng ;
Cheng, Ching-Yu ;
Aung, Tin ;
Wong, Tien Yin .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (06) :1019-1032
[10]   Multi-label classification of fundus images based on graph convolutional network [J].
Cheng, Yinlin ;
Ma, Mengnan ;
Li, Xingyu ;
Zhou, Yi .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (SUPPL 2)