Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion

被引:144
作者
Tao, Hongfeng [1 ]
Qiu, Jier [1 ]
Chen, Yiyang [2 ]
Stojanovic, Vladimir [3 ]
Cheng, Long [1 ]
机构
[1] Jiangnan Univ, Key Lab Adv Proc Control Light Ind, Minist Educ, Wuxi 214122, Peoples R China
[2] Univ Southampton, Dept Civil Maritime & Environm Engn, Southampton SO16 7QF, England
[3] Univ Kragujevac, Fac Mech & Civil Engn, Dept Automat Control Robot & Fluid Tech, Kraljevo 36000, Serbia
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2023年 / 360卷 / 02期
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NEURAL-NETWORK; INTELLIGENCE;
D O I
10.1016/j.jfranklin.2022.11.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, data-driven methods have been widely used in rolling bearing fault diagnosis with great success, which mainly relies on the same data distribution and massive labeled data. However, bearing equipment is in normal working state for most of the time and operates under variable operating conditions. This makes it difficult to obtain bearing data labels, and the distribution of the collected samples varies widely. To address these problems, an unsupervised cross-domain fault diagnosis method based on time-frequency information fusion is proposed in this paper. Firstly, wavelet packet decompo-sition and reconstruction are carried out on the bearing vibration signal, and the energy eigenvectors of each sub-band are extracted to obtain a 2-D time-frequency map of fault features. Secondly, an unsu-pervised cross-domain fault diagnosis model is constructed, the improved maximum mean discrepancy algorithm is used as the measurement standard, and the joint distribution distance is calculated with the help of pseudo-labels to reduce data distribution differences. Finally, the model is applied to the motor bearing for comparison and verification. The results demonstrate its high diagnosis accuracy and strong robustness.(c) 2022 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1454 / 1477
页数:24
相关论文
共 50 条
  • [31] A cross-domain intelligent fault diagnosis method based on deep subdomain adaptation for few-shot fault diagnosis
    Bo Wang
    Meng Zhang
    Hao Xu
    Chao Wang
    Wenlong Yang
    Applied Intelligence, 2023, 53 : 24474 - 24491
  • [32] Cross-domain correlation representation for new fault categories discovery in rolling bearings
    Wang, Chenglong
    Nie, Jie
    Nie, Weizhi
    Yin, Peizhe
    Niu, Di
    Liang, Xinyue
    Yu, Shusong
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (03)
  • [33] Rolling Bearing Fault Diagnosis Based on Recurrence Plot
    Chen, Zheming
    Xu, Bin
    Zhang, Zhong
    IEEE ACCESS, 2024, 12 : 149710 - 149721
  • [34] Cross-Domain Fault Diagnosis Using Knowledge Transfer Strategy: A Review
    Zheng, Huailiang
    Wang, Rixin
    Yang, Yuantao
    Yin, Jiancheng
    Li, Yongbo
    Li, Yuqing
    Xu, Minqiang
    IEEE ACCESS, 2019, 7 : 129260 - 129290
  • [35] CFI-LFENet: Infusing cross-domain fusion image and lightweight feature enhanced network for fault diagnosis
    Lian, Chao
    Zhao, Yuliang
    Shao, Jinliang
    Sun, Tianang
    Dong, Fanghecong
    Ju, Zhongjie
    Zhan, Zhikun
    Shan, Peng
    INFORMATION FUSION, 2024, 104
  • [36] Globally Localized Multisource Domain Adaptation for Cross-Domain Fault Diagnosis With Category Shift
    Feng, Yong
    Chen, Jinglong
    He, Shuilong
    Pan, Tongyang
    Zhou, Zitong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (06) : 3082 - 3096
  • [37] An unsupervised transfer learning approach for rolling bearing fault diagnosis based on dual pseudo-label screening
    Huo, Chunran
    Xu, Weiyang
    Jiang, Quansheng
    Shen, Yehu
    Zhu, Qixin
    Zhang, Qingkui
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (04): : 2288 - 2309
  • [38] A rolling bearing fault diagnosis method based on a convolutional neural network with frequency attention mechanism
    Zhou, Hui
    Liu, Runda
    Li, Yaxin
    Wang, Jiacheng
    Xie, Suchao
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (04): : 2475 - 2495
  • [39] Rolling bearing fault diagnosis method based on multi-sensor two-stage fusion
    Liu, Cang
    Tong, Jinyu
    Zheng, Jinde
    Pan, Haiyang
    Bao, Jiahan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (12)
  • [40] Rolling bearing fault diagnosis based on variational mode decomposition and weighted multidimensional feature entropy fusion
    Lei, Na
    Huang, Feihu
    Li, Chunhui
    JOURNAL OF VIBROENGINEERING, 2024, 26 (03) : 590 - 614