Indecomposability of top local cohomology modules and Falting's finiteness dimension of modules

被引:0
作者
Yazdani, Saeed [1 ]
A'zami, Jafar [1 ]
Sadegh, Yasin [1 ]
机构
[1] Univ Mohaghegh Ardabili, Fac Math Sci, Dept Math, Ardebil 5619911367, Iran
关键词
Associated primes; Cohen-Macaulay module; Indecomposable module; Local cohomology; COFINITE;
D O I
10.1007/s10998-023-00525-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (R, m) be a commutative Noetherian local ring, I a proper ideal of R and M a finitely generated R-module of dimension d. We investigate Falting's finiteness dimension f(I)(M) and the equidimensionalness of certain quotients of M. It is seen, under some conditions, that f(I)(M) = max{1, grade(I, M)}. To achieve this, we first study the indecomposability of the top local cohomology module H-m(d)(M). As a consequence, in case Mis an indecomposable Cohen-Macaulay R-module, it turns out that Hdm(M) and therefore, when additionally R is complete, the canonical (dualizing) module K(M) are indecomposable. In this paper, we also find new results about the dimension of H-I(i)(M), i = 0, 1, 2, ... , d. Although dimR (HIM)-M-i) < d- iholds for all integers i, we show that there exists 0 = i = dsuch that dim(R)H(I)(i)(M) =d-i.
引用
收藏
页码:429 / 440
页数:12
相关论文
共 13 条