Electrocatalytic reduction of carbon dioxide in confined microspace utilizing single nickel atom decorated nitrogen-doped carbon nanospheres

被引:82
作者
Lv, Chunmei [1 ]
Huang, Kai [1 ]
Fan, Yu [1 ]
Xu, Jing [2 ]
Lian, Cheng [1 ]
Jiang, Hongliang [1 ]
Zhang, Yongzheng [1 ]
Ma, Cheng [1 ,3 ]
Qiao, Wenming [1 ,3 ]
Wang, Jitong [1 ,3 ]
Ling, Licheng [1 ,3 ]
机构
[1] East China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[2] Guangxi Univ, Sch Chem & Chem Engn, Guangxi Key Lab Petrochem Resource Proc & Proc Int, Nanning 530004, Peoples R China
[3] East China Univ Sci & Technol, Key Lab Specially Funct Polymer Mat & Related Tech, Shanghai 200237, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
CO; 2; RR; Single Ni atom; Nanosphere; Confined microspace; CO2; ELECTROREDUCTION; SITES; CATALYSTS; FORMATE; SPHERES;
D O I
10.1016/j.nanoen.2023.108384
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon dioxide electroreduction reaction (CO2RR), as a rational regulation of CO2 resource utilization, demands effectively selective catalysts for converting CO2 into high-value-added chemicals. Carbon-based nanoreactors featuring rationally designed porous framework structures might provide a unique chemical environment for confining and stabilizing the active metal species, consequently improving the CO2RR activity. Herein, nitrogen -doped porous carbon nanospheres decorated by single Ni atom (Ni-NCN) featuring a Ni-N4 structure were synthesized using the modified sol-gel method for the reduction of CO2 to CO. The synergistic effect of the Ni-N4 active sites homogenously distributed in the interconnected pore structure and the favorable chemical confined microspace of carbon nanospheres endows it with excellent CO2RR activity. In the H-type cell, Ni-NCN displays a CO Faradaic efficiency up to 96.6 % and a CO current density of 9.8 mA cm-2 at -0.83 V (vs. RHE), as well as a high turnover frequency (TOF) of 10658 h-1 at -1.33 V (vs. RHE). In the flow cell, the mass transfer can be further facilitated by the formation of three-phase interface. The Faradaic efficiency and current density of CO2RR catalyzed by Ni-NCN is enhanced to 97.9 % and 102.4 mA cm-2 at -1.13 V (vs. RHE), and the wide potential window ranges from -0.53 V to -1.33 V (vs. RHE) with the Faradaic efficiency more than 95 %. Density functional theory (DFT) calculations reveal that the high selectivity of Ni-N4 sites is mainly ascribed to the high energy barrier that restrains the hydrogen evolution reaction (HER). Meanwhile, the lower CO binding energy on Ni-N4 site helps the escape of CO to increase the TOF of active sites. The in-situ Fourier transform infrared (FTIR) spectroscopy verifies that the intermediate *COOH can be more stable in the confined envi-ronment of Ni-NCN to promote the selectivity of CO2RR. The strategy of constructing confined microspace paves a new path for the rational design of high-efficient single atom catalysts for CO2 reduction.
引用
收藏
页数:14
相关论文
共 67 条
[1]   Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products [J].
Bao, Haihong ;
Qiu, Yuan ;
Peng, Xianyun ;
Wang, Jia-ao ;
Mi, Yuying ;
Zhao, Shunzheng ;
Liu, Xijun ;
Liu, Yifan ;
Cao, Rui ;
Zhuo, Longchao ;
Ren, Junqiang ;
Sun, Jiaqiang ;
Luo, Jun ;
Sun, Xuping .
NATURE COMMUNICATIONS, 2021, 12 (01)
[2]   The structure-activity correlation of single-site Ni catalysts dispersed onto porous carbon spheres toward electrochemical CO2 reduction [J].
Cao, Zezhong ;
Su, Panpan ;
Wang, Xinyao ;
Liu, Xiaoyan ;
Ma, Yanfu ;
Li, Congming ;
Jiang, San Ping ;
Liu, Jian .
FUEL, 2022, 321
[3]   Enhancement of Mass Transfer for Facilitating Industrial-Level CO2 Electroreduction on Atomic Ni-N4 Sites [J].
Chen, Baotong ;
Li, Boran ;
Tian, Ziqi ;
Liu, Wenbo ;
Liu, WenPing ;
Sun, Weiwei ;
Wang, Kang ;
Chen, Liang ;
Jiang, Jianzhuang .
ADVANCED ENERGY MATERIALS, 2021, 11 (40)
[4]   MOF Encapsulating N-Heterocyclic Carbene-Ligated Copper Single-Atom Site Catalyst towards Efficient Methane Electrosynthesis [J].
Chen, Shenghua ;
Li, Wen-Hao ;
Jiang, Wenjun ;
Yang, Jiarui ;
Zhu, Jiexin ;
Wang, Liqiang ;
Ou, Honghui ;
Zhuang, Zechao ;
Chen, Mingzhao ;
Sun, Xiaohui ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (04)
[5]   Atomically Dispersed Fe-Co Bimetallic Catalysts for the Promoted Electroreduction of Carbon Dioxide [J].
Chen, Zhangsen ;
Zhang, Gaixia ;
Wen, Yuren ;
Chen, Ning ;
Chen, Weifeng ;
Regier, Tom ;
Dynes, James ;
Zheng, Yi ;
Sun, Shuhui .
NANO-MICRO LETTERS, 2022, 14 (01)
[6]   Controlling the selectivity of high-surface-area Ru/TiO2 catalysts in CO2 reduction-modifying the reaction properties by Si doping of the support [J].
Cisneros, Sebastian ;
Chen, Shilong ;
Fauth, Corinna ;
Abdel-Mageed, Ali M. ;
Pollastri, Simone ;
Bansmann, Joachim ;
Olivi, Luca ;
Aquilanti, Giuliana ;
Atia, Hanan ;
Rabeah, Jabor ;
Parlinska-Wojtan, Magdalena ;
Bruckner, Angelika ;
Behm, R. Jurgen .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 317
[7]   Suppressing hydrogen evolution for high selective CO2 reduction through surface-reconstructed heterojunction photocatalyst [J].
Dou, Yibo ;
Zhou, Awu ;
Yao, Yuechao ;
Lim, Sung Yul ;
Li, Jian-Rong ;
Zhang, Wenjing .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 286 (286)
[8]   Probing the Reaction Mechanism of CO2 Electroreduction over Ag Films via Operando Infrared Spectroscopy [J].
Firet, Nienke J. ;
Smith, Wilson A. .
ACS CATALYSIS, 2017, 7 (01) :606-612
[9]   One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules [J].
Fuertes, Antonio B. ;
Valle-Vigon, Patricia ;
Sevilla, Marta .
CHEMICAL COMMUNICATIONS, 2012, 48 (49) :6124-6126
[10]   Bifunctional Nb-N-C atomic catalyst for aqueous Zn-air battery driving CO2 electrolysis [J].
Gao, Sanshuang ;
Wang, Tianwei ;
Jin, Mengmeng ;
Zhang, Shusheng ;
Liu, Qian ;
Hu, Guangzhi ;
Yang, Hui ;
Luo, Jun ;
Liu, Xijun .
SCIENCE CHINA-MATERIALS, 2023, 66 (03) :1013-1023