Quantitative characterization of pore-fracture structure of medium and high-rank coal based on micro-CT technology

被引:6
|
作者
Hao, Jinwei [1 ]
Shu, Longyong [1 ,4 ]
Huo, Zhonggang [1 ]
Fan, Yongpeng [1 ]
Wu, Siyuan [2 ]
Li, Yang [1 ]
Guo, Xiaoyang [3 ]
机构
[1] China Coal Res Inst, Mine Safety Technol Branch, Beijing, Peoples R China
[2] Beijing Inst Petrochem Technol, Sch Safety Engn, Beijing, Peoples R China
[3] Taiyuan Univ Technol, Coll safety Engn, Taiyuan, Peoples R China
[4] China Coal Res Inst, Mine Safety Technol Branch, Beijing 100013, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Pore-fracture structure; CT 3D reconstruction; micro-CT technology; representative elementary volume (REV); pore-throat parameters; medium and high-rank coal; MERCURY INTRUSION; GAS-ADSORPTION; POROUS-MEDIA; POROSITY; SHALE; SCALE; MICROSTRUCTURE; PERMEABILITY; SCATTERING; FLOW;
D O I
10.1080/19392699.2023.2190102
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Coal is a natural and complex porous medium, which contains pore-fracture structures of different scales. The pore-fracture structures of coal directly affect the characteristics of gas storage and migration. In this paper, high-resolution X-ray CT scanning technology is used to quantitatively characterize the pore-fracture structure of medium and high-rank coals. First, the porosity inversion method is used to determine the optimal threshold segmentation of pores and fracture in medium and high-rank coals. Then, the pore and fracture model of representative element volume (REV) was extracted and established to characterize the area porosity, pore surface area, and shape factor of the two coals, and the relationship between pore surface area and shape factor was investigated. Finally, an equivalent pore network model (PNM) of connected pore topology was established, and pore-throat parameters are statistically analyzed, including pore volume, pore radius, throat radius, throat length, and coordination number. The results show that the average pore diameter and average surface area of macropores in medium-rank coals are larger than those of high-rank coals, and high-rank coals have fewer isolated pores. With the increase of coal rank, the length and radius of the throat gradually decrease, which indicates that the throat of the medium-rank coal has a higher degree of development, and the gas seepage ability in the throat is stronger. The outcome of this study is of great significance for comprehensively understanding the pore-fracture structure of coal in micro-scale.
引用
收藏
页码:358 / 375
页数:18
相关论文
共 50 条
  • [21] Study on characterization of micro-fracture of shale based on micro-CT
    Gou Q.
    Xu S.
    Hao F.
    Yang F.
    Wang Y.
    Lu Y.
    Zhang A.
    Cheng X.
    Qing J.
    Gao M.
    Dizhi Xuebao/Acta Geologica Sinica, 2019, 93 (09): : 2372 - 2382
  • [22] Compressibility of Different Pore and Fracture Structures and Its Relationship with Heterogeneity and Minerals in Low-Rank Coal Reservoirs: An Experimental Study Based on Nuclear Magnetic Resonance and Micro-CT
    Cheng, Ming
    Fu, Xuehai
    Kang, Junqiang
    ENERGY & FUELS, 2020, 34 (09) : 10894 - 10903
  • [23] 3-D visual analysis and quantitative characterization on coal matrix based on Micro-CT
    Zhao, Changxin
    Cheng, Yuanping
    Wang, Chenghao
    Zhang, Kaizhong
    Wang, Zhenyang
    Chu, Peng
    Yang, Tao
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2024, 176
  • [24] High Rank Coal Pore Fracture Structure and its Impact on Reservoir Characteristics in the Southern Qinshui Basin
    Ji, Changjiang
    Li, Guofu
    Hao, Haijin
    Song, Zhimin
    Guo, Dingding
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [25] Change Laws of Pore-Fracture Structure of Coal under High- Temperature Steam Shock
    Lin, Baiquan
    Xu, Youping
    Li, Yuxue
    ACS OMEGA, 2022, 7 (48): : 44298 - 44309
  • [26] Characteristics of fractures in different macro-coal components in high-rank coal based on CT images
    Qu J.
    Shen J.
    Han L.
    Ji C.
    Cheng H.
    Natural Gas Industry, 2022, 42 (06): : 76 - 86
  • [27] Pore Structure and Permeability Characterization of High-rank Coal Reservoirs: A Case of the Bide-Santang Basin, Western Guizhou, South China
    Guo, Chen
    Qin, Yong
    Ma, Dongmin
    Xia, Yucheng
    Bao, Yuan
    Chen, Yue
    Lu, Lingling
    ACTA GEOLOGICA SINICA-ENGLISH EDITION, 2020, 94 (02) : 243 - 252
  • [28] Effects of pore-fracture structure of ductile tectonically deformed coals on their permeability: An experimental study based on raw coal cores
    Cheng, Guoxi
    Jiang, Bo
    Li, Ming
    Li, Fengli
    Song, Yu
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 193
  • [29] Characteristics of high-rank coal structure parallel and perpendicular to the bedding plane via NMR and X-ray CT
    Liu, Shi-Qi
    Sang, Shu-Xun
    Hu, Qiu-Jia
    Fang, Hui-Huang
    PETROLEUM SCIENCE, 2020, 17 (04) : 925 - 938
  • [30] Effects of pore-fracture structure of ductile tectonically deformed coals on their permeability: An experimental study based on raw coal cores
    Cheng, Guoxi
    Jiang, Bo
    Li, Ming
    Li, Fengli
    Song, Yu
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 193