Investigating a Library of Flavonoids as Potential Inhibitors of a Cancer Therapeutic Target MEK2 Using in Silico Methods

被引:7
作者
AlZahrani, Wejdan M. M. [1 ]
AlGhamdi, Shareefa A. A. [1 ]
Sohrab, Sayed S. S. [2 ,3 ]
Rehan, Mohd [3 ,4 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Biochem, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, King Fahd Med Res Ctr, Special Infect Agents Unit BSL3, Jeddah 21589, Saudi Arabia
[3] King Abdulaziz Univ, Fac Appl Med Sci, Dept Med Lab Sci, Jeddah 21589, Saudi Arabia
[4] King Abdulaziz Univ, King Fahd Med Res Ctr, Jeddah 21589, Saudi Arabia
关键词
MAPK; MEK2; flavonoids; molecular docking; ADMET; molecular dynamics simulation; SIGNALING PROTEIN; KINASE; DRUG; ACTIVATION; INSIGHTS; ANALOG;
D O I
10.3390/ijms24054446
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The second leading cause of death in the world is cancer. Mitogen-activated protein kinase (MAPK) and extracellular signal-regulated protein kinase (ERK) 1 and 2 (MEK1/2) stand out among the different anticancer therapeutic targets. Many MEK1/2 inhibitors are approved and widely used as anticancer drugs. The class of natural compounds known as flavonoids is well-known for their therapeutic potential. In this study, we focus on discovering novel inhibitors of MEK2 from flavonoids using virtual screening, molecular docking analyses, pharmacokinetic prediction, and molecular dynamics (MD) simulations. A library of drug-like flavonoids containing 1289 chemical compounds prepared in-house was screened against the MEK2 allosteric site using molecular docking. The ten highest-scoring compounds based on docking binding affinity (highest score: -11.3 kcal/mol) were selected for further analysis. Lipinski's rule of five was used to test their drug-likeness, followed by ADMET predictions to study their pharmacokinetic properties. The stability of the best-docked flavonoid complex with MEK2 was examined for a 150 ns MD simulation. The proposed flavonoids are suggested as potential inhibitors of MEK2 and drug candidates for cancer therapy.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Harnessing Brazilian biodiversity database: identification of flavonoids as potential inhibitors of SARS-CoV-2 main protease using computational approaches and all-atom molecular dynamics simulation
    da Rocha, Joao Augusto Pereira
    da Costa, Renato Araujo
    da Costa, Andreia do Socorro Silva
    da Rocha, Elaine Cristina Medeiros
    Gomes, Anderson Jose Bahia
    Machado, Alencar Kolinski
    Fagan, Solange Binotto
    Brasil, Davi do Socorro Barros
    Lima e Lima, Anderson Henrique
    FRONTIERS IN CHEMISTRY, 2024, 12
  • [42] IDENTIFICATION OF POTENTIAL INHIBITORS OF CORONAVIRUS SARS-CoV-2 USING THE METHODS OF VIRTUAL SCREENING AND MOLECULAR MODELING
    Andrianov, Alexander M.
    Kornoushenko, Yuri, V
    Karpenko, Anna D.
    Tuzikov, Alexander, V
    DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2020, 64 (03): : 308 - 316
  • [43] In silico identification of 1,2,4-triazoles as potential Candida Albicans inhibitors using 3D-QSAR, molecular docking, molecular dynamics simulations, and ADMET profiling
    Soukaina Bouamrane
    Ayoub Khaldan
    Halima Hajji
    Reda El-mernissi
    Marwa Alaqarbeh
    Nada Alsakhen
    Hamid Maghat
    Mohammed Aziz Ajana
    Abdelouahid Sbai
    Mohammed Bouachrine
    Tahar Lakhlifi
    Molecular Diversity, 2023, 27 : 2111 - 2132
  • [44] Proteomics uncover EPHA2 as a potential novel therapeutic target in colorectal cancer cell lines with acquired cetuximab resistance
    Torlot, Lucien
    Jarzab, Anna
    Albert, Johanna
    Pok-Udvari, Agnes
    Stahler, Arndt
    Holch, Julian Walter
    Gerlinger, Marco
    Heinemann, Volker
    Klauschen, Frederick
    Kirchner, Thomas
    Kumbrink, Joerg
    Kuester, Bernhard
    Jung, Andreas
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (02) : 669 - 682
  • [45] In silico identification of 1,2,4-triazoles as potential Candida Albicans inhibitors using 3D-QSAR, molecular docking, molecular dynamics simulations, and ADMET profiling
    Bouamrane, Soukaina
    Khaldan, Ayoub
    Hajji, Halima
    El-mernissi, Reda
    Alaqarbeh, Marwa
    Alsakhen, Nada
    Maghat, Hamid
    Ajana, Mohammed Aziz
    Sbai, Abdelouahid
    Bouachrine, Mohammed
    Lakhlifi, Tahar
    MOLECULAR DIVERSITY, 2023, 27 (05) : 2111 - 2132
  • [46] In silico prediction of potential inhibitors for SARS-CoV-2 Omicron variant using molecular docking and dynamics simulation-based drug repurposing
    Eslam A. R. Mohamed
    Islam M. Abdel-Rahman
    Magdi E. A. Zaki
    Ahmad Al-Khdhairawi
    Mahmoud M. Abdelhamid
    Ahmad M. Alqaisi
    Lyana binti Abd Rahim
    Bilal Abu-Hussein
    Azza A. K. El-Sheikh
    Sayed F. Abdelwahab
    Heba Ali Hassan
    Journal of Molecular Modeling, 2023, 29
  • [47] In silico prediction of potential inhibitors for SARS-CoV-2 Omicron variant using molecular docking and dynamics simulation-based drug repurposing
    Mohamed, Eslam A. R.
    Abdel-Rahman, Islam M.
    Zaki, Magdi E. A.
    Al-Khdhairawi, Ahmad
    Abdelhamid, Mahmoud M.
    Alqaisi, Ahmad M.
    Abd Rahim, Lyana Binti
    Abu-Hussein, Bilal
    El-Sheikh, Azza A. K.
    Abdelwahab, Sayed F.
    Hassan, Heba Ali
    JOURNAL OF MOLECULAR MODELING, 2023, 29 (03)
  • [48] Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach
    Syed Ovais Aftab
    Muhammad Zubair Ghouri
    Muhammad Umer Masood
    Zeshan Haider
    Zulqurnain Khan
    Aftab Ahmad
    Nayla Munawar
    Journal of Translational Medicine, 18
  • [49] Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach
    Aftab, Syed Ovais
    Ghouri, Muhammad Zubair
    Masood, Muhammad Umer
    Haider, Zeshan
    Khan, Zulqurnain
    Ahmad, Aftab
    Munawar, Nayla
    JOURNAL OF TRANSLATIONAL MEDICINE, 2020, 18 (01)
  • [50] Discovery of the 3-Amino-1,2,4-triazine-Based Library as Selective PDK1 Inhibitors with Therapeutic Potential in Highly Aggressive Pancreatic Ductal Adenocarcinoma
    Carbone, Daniela
    De Franco, Michele
    Pecoraro, Camilla
    Bassani, Davide
    Pavan, Matteo
    Cascioferro, Stella
    Parrino, Barbara
    Cirrincione, Girolamo
    Dall'Acqua, Stefano
    Moro, Stefano
    Gandin, Valentina
    Diana, Patrizia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (04)