Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines

被引:26
|
作者
Yan, Jianhai [1 ]
He, Zhen [1 ]
He, Shuguang [1 ]
机构
[1] Tianjin Univ, Coll Management & Econ, 92 weijin Rd, Tianjin 300072, Peoples R China
关键词
Prognostics and health management; Health state assessment; Remaining useful life prediction; Multitask deep learning model; Attention mechanism; Prediction intervals; NETWORK;
D O I
10.1016/j.ress.2023.109141
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Prognostics and health management (PHM) uses data collected through sensors to monitor the states of sensor -equipped machines and provide maintenance decisions. PHM includes two essential tasks, i.e., health state (HS) assessment and remaining useful life (RUL) prediction. In existing works, the two tasks are often conducted separately without considering the relationships between HS and RUL. In this paper, we propose a multitask deep learning model for simultaneously assessing the HS and predicting the RUL of a machine; the model consists of four modules: a shared module, a multigate mixture-of-experts (MMOE) layer, an HS module, and an RUL module. In the model, a shared module including a bidirectional long short-term memory (BiLSTM) layer, an encoding layer, and a sampling layer is used to extract the shared information of the two tasks. Then, the MMOE layer is built to identify different information according to the two tasks. In the output layer, the HS module with an attention mechanism is used to evaluate the HS of the studied machine. Moreover, the RUL module predicts the RUL and constructs RUL prediction intervals to quantify uncertainty. Finally, the proposed model outperforms the state-of-the-art benchmark models and is validated on a public dataset of engines.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A feature disentanglement and unsupervised domain adaptation of remaining useful life prediction for sensor-equipped machines
    Yan, Jianhai
    Ye, Zhi-Sheng
    He, Shuguang
    He, Zhen
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 242
  • [2] An unsupervised subdomain adaptation of cross-domain remaining useful life prediction for sensor-equipped equipments
    Yan, Jianhai
    Ye, Zhi-Sheng
    He, Shuguang
    He, Zhen
    COMPUTERS & INDUSTRIAL ENGINEERING, 2025, 203
  • [3] A Gated Multiscale Multitask Learning Model Using Time-Frequency Representation for Health Assessment and Remaining Useful Life Prediction
    Wu, Tong
    Chen, Tengpeng
    SENSORS, 2023, 23 (04)
  • [4] Multitask learning for health condition identification and remaining useful life prediction: deep convolutional neural network approach
    Kim, Tae San
    Sohn, So Young
    JOURNAL OF INTELLIGENT MANUFACTURING, 2021, 32 (08) : 2169 - 2179
  • [5] Multitask learning for health condition identification and remaining useful life prediction: deep convolutional neural network approach
    Tae San Kim
    So Young Sohn
    Journal of Intelligent Manufacturing, 2021, 32 : 2169 - 2179
  • [6] Remaining useful life prediction of rolling element bearings based on health state assessment
    Liu, Zhiliang
    Zuo, Ming J.
    Qin, Yong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2016, 230 (02) : 314 - 330
  • [7] Remaining Useful Life Prediction Based on Incremental Learning
    Que, Zijun
    Jin, Xiaohang
    Xu, Zhengguo
    Hu, Chang
    IEEE TRANSACTIONS ON RELIABILITY, 2024, 73 (02) : 876 - 884
  • [8] A Health state-related ensemble deep learning method for aircraft engine remaining useful life prediction
    Cheng, Yujie
    Zeng, Jiyan
    Wang, Zili
    Song, Dengwei
    APPLIED SOFT COMPUTING, 2023, 135
  • [9] A survey on few-shot learning for remaining useful life prediction
    Mo, Renpeng
    Zhou, Han
    Yin, Hongpeng
    Si, Xiaosheng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 257
  • [10] Probabilistic State of Health and Remaining Useful Life Prediction for Li-ion Batteries
    Bracale, Antonio
    De Falco, Pasquale
    Di Noia, Luigi Pio
    Rizzo, Renato
    2021 IEEE TEXAS POWER AND ENERGY CONFERENCE (TPEC), 2021, : 241 - 246