Calculating periodic orbits of the Henon-Heiles system

被引:4
作者
Alhowaity, Sawsan [1 ]
Abouelmagd, Elbaz I. I. [2 ]
Diab, Zouhair [3 ]
Guirao, Juan L. G. [4 ,5 ]
机构
[1] Shaqra Univ, Coll Sci & Humanities, Dept Math, Shaqra, Saudi Arabia
[2] Natl Res Inst Astron & Geophys NRIAG, Astron Dept, Celestial Mech & Space Dynam Res Grp CMSDRG, Cairo, Egypt
[3] Larbi Tebessi Univ, Dept Math & Comp Sci, Tebessa, Algeria
[4] Univ Politecn Cartagena, Dept Matemaca Aplicada & Estadist, Cartagena, Spain
[5] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
关键词
Henon-Heiles system; celestial mechanics; bounded and unbounded motions; periodic orbits; averaging theory; STABILITY; DYNAMICS; FRAME;
D O I
10.3389/fspas.2022.945236
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This work is divided to two parts; the first part analyzes the features of Henon-Heiles's potential and finding the energy levels for bounded and unbounded motions. The critical points are explored in different phase spaces from the classical potential to the generalized one. In the second part, the possible solutions of the generalized (fifth-degree) Henon-Heiles system are analyzed using the averaging theory. Two consequent transformations are used to set the Hamiltonian of this system in standard form for applying the averaging theory. In this context, eight solutions are found, where one of them is not convenient for the proposed assumptions, and the other seven solutions are proper and adequate to represent seven periodic orbits for the generalized Henon-Heiles dynamical system, which has at least seven periodic orbits.
引用
收藏
页数:12
相关论文
共 35 条
[1]   The dynamics of the relativistic Kepler problem [J].
Abouelmagd, Elbaz I. ;
Garcia Guirao, Juan Luis ;
Llibre, Jaume .
RESULTS IN PHYSICS, 2020, 19
[2]   Periodic solution of the nonlinear Sitnikov restricted three-body problem [J].
Abouelmagd, Elbaz I. ;
Garcia Guirao, Juan Luis ;
Pal, Ashok Kumar .
NEW ASTRONOMY, 2020, 75
[3]   PERIODIC ORBITS FOR THE PERTURBED PLANAR CIRCULAR RESTRICTED 3-BODY PROBLEM [J].
Abouelmagd, Elbaz, I ;
Garcia Guirao, Juan Luis ;
Libre, Jaume L. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (03) :1007-1020
[4]   Periodic Solution of the Two-Body Problem by KB Averaging Method Within Frame of the Modified Newtonian Potential [J].
Abouelmagd, Elbaz I. .
JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2018, 65 (03) :291-306
[5]   Periodic Orbits of the Planar Anisotropic Kepler Problem [J].
Abouelmagd, Elbaz I. ;
Llibre, Jaume ;
Garcia Guirao, Juan Luis .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (03)
[6]   Numerical integration of a relativistic two-body problem via a multiple scales method [J].
Abouelmagd, Elbaz I. ;
Elshaboury, S. M. ;
Selim, H. H. .
ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (01) :10
[7]   Dynamics of a dumbbell satellite under the zonal harmonic effect of an oblate body [J].
Abouelmagd, Elbaz I. ;
Guirao, Juan L. G. ;
Vera, Juan A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (03) :1057-1069
[8]   Periodic orbit in the frame work of restricted three bodies under the asteroids belt effect [J].
Abozaid, Ahmed A. ;
Selim, H. H. ;
Gadallah, Kamel A. K. ;
Hassan, I. A. ;
Abouelmagd, Elbaz, I .
APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2020, 5 (02) :157-176
[9]   Wada basins and chaotic invariant sets in the Henon-Heiles system -: art. no. 066208 [J].
Aguirre, J ;
Vallejo, JC ;
Sanjuán, MAF .
PHYSICAL REVIEW E, 2001, 64 (06) :11
[10]   Periodic orbits of a generalized Henon-Heiles system [J].
alvarez-Ramirez, M. ;
Garcia-Saldana, J. D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (06)