Calculating periodic orbits of the Henon-Heiles system

被引:3
|
作者
Alhowaity, Sawsan [1 ]
Abouelmagd, Elbaz I. I. [2 ]
Diab, Zouhair [3 ]
Guirao, Juan L. G. [4 ,5 ]
机构
[1] Shaqra Univ, Coll Sci & Humanities, Dept Math, Shaqra, Saudi Arabia
[2] Natl Res Inst Astron & Geophys NRIAG, Astron Dept, Celestial Mech & Space Dynam Res Grp CMSDRG, Cairo, Egypt
[3] Larbi Tebessi Univ, Dept Math & Comp Sci, Tebessa, Algeria
[4] Univ Politecn Cartagena, Dept Matemaca Aplicada & Estadist, Cartagena, Spain
[5] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
关键词
Henon-Heiles system; celestial mechanics; bounded and unbounded motions; periodic orbits; averaging theory; STABILITY; DYNAMICS; FRAME;
D O I
10.3389/fspas.2022.945236
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This work is divided to two parts; the first part analyzes the features of Henon-Heiles's potential and finding the energy levels for bounded and unbounded motions. The critical points are explored in different phase spaces from the classical potential to the generalized one. In the second part, the possible solutions of the generalized (fifth-degree) Henon-Heiles system are analyzed using the averaging theory. Two consequent transformations are used to set the Hamiltonian of this system in standard form for applying the averaging theory. In this context, eight solutions are found, where one of them is not convenient for the proposed assumptions, and the other seven solutions are proper and adequate to represent seven periodic orbits for the generalized Henon-Heiles dynamical system, which has at least seven periodic orbits.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Periodic orbits of a generalized Henon-Heiles system
    alvarez-Ramirez, M.
    Garcia-Saldana, J. D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (06)
  • [2] Stability of some simple periodic orbits in a Henon-Heiles potential
    Antonov, VA
    Timoshkova, EI
    ASTRONOMICHESKII ZHURNAL, 1996, 73 (06): : 953 - 960
  • [3] Periodic orbits and non-integrability of Henon-Heiles systems
    Llibre, Jaume
    Jimenez-Lara, Lidia
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (20)
  • [4] Periodic Orbits for a Fifth-Order Generalized Henon-Heiles Hamiltonian System
    Alvarez-Ramirez, M.
    Cornelio, J. Lino
    Medina, M.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (01) : 1 - 9
  • [5] Classifying orbits in the classical Henon-Heiles Hamiltonian system
    Zotos, Euaggelos E.
    NONLINEAR DYNAMICS, 2015, 79 (03) : 1665 - 1677
  • [6] Periodic orbits for a generalized Henon-Heiles Hamiltonian system with an additional singular gravitational term
    Llibre, Jaume
    Valls, Claudia
    EPL, 2021, 134 (06)
  • [7] Reeb's Theorem and Periodic Orbits for a Rotating Henon-Heiles Potential
    Lanchares, V.
    Pascual, A. I.
    Inarrea, M.
    Salas, J. P.
    Palacian, J. F.
    Yanguas, P.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (01) : 445 - 461
  • [8] Periodic orbits and equilibria for a seventh-order generalized Henon-Heiles Hamiltonian system
    Llibre, Jaume
    Saeed, Tareq
    Zotos, Euaggelos E.
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 167
  • [9] THE HENON-HEILES SYSTEM REVISITED
    FORDY, AP
    PHYSICA D, 1991, 52 (2-3): : 204 - 210
  • [10] DETAILED BIFURCATIONS OF PERIODIC-ORBITS WITH THREEFOLD SYMMETRY OF THE HENON-HEILES HAMILTONIAN
    KUROSAKI, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (10) : 3589 - 3592