Controlled Synthesis of Dendrite-like Polyglycerols Using Aluminum Complex for Biomedical Applications

被引:2
作者
Perumal, Govindaraj [1 ]
Pappuru, Sreenath [5 ,6 ]
Doble, Mukesh [1 ]
Chakraborty, Debashis [2 ]
Shajahan, Shanavas [3 ]
Abu Haija, Mohammad [4 ]
机构
[1] Saveetha Inst Med & Tech Sci SIMATS, Saveetha Dent Coll & Hosp, Dept Conservat Dent & Endodont, Chennai 600077, India
[2] Indian Inst Technol Madras, Dept Chem, Chennai 600036, India
[3] Khalifa Univ Sci & Technol, Dept Chem, Abu Dhabi 127788, U Arab Emirates
[4] Khalifa Univ Sci & Technol, Ctr Catalysis & Separat, Abu Dhabi, U Arab Emirates
[5] Technion Israel Inst Technol, Fac Chem Engn, IL-320003 Haifa, Israel
[6] Technion Israel Inst Technol, Grand Technion Energy Program, IL-320003 Haifa, Israel
来源
ACS OMEGA | 2023年
关键词
RING-OPENING POLYMERIZATION; HYPERBRANCHED POLYGLYCEROL; BIOLOGICAL EVALUATION; BLOCK-COPOLYMERS; DELIVERY; BIOCOMPATIBILITY; GLYCIDOL; POLYETHER; CATALYSTS;
D O I
10.1021/acsomega.2c06761
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work describes a one-pot synthesis of dendrite -like hyperbranched polyglycerols (HPGs) via a ring-opening multibranching polymerization (ROMBP) process using a bis(5,7-dichloro-2-methyl-8-quinolinolato)methyl aluminum complex (1) as a catalyst and 1,1,1-tris(hydroxymethyl)propane/trimethylol propane (TMP) as an initiator. Single-crystal X-ray diffraction (XRD) analysis was used to elucidate the molecular structure of complex 1. Inverse-gated (IG)C-13 NMR analysis of HPGs showed degree of branching between 0.50 and 0.57. Gel permeation chromatography (GPC) analysis of the HPG polymers provided low, medium, and high-molecular weight (M-n) polymers ranging from 14 to 73 kDa and molecular weight distributions (M-w/M-n) between 1.16 and 1.35. The obtained HPGs exhibited high wettability with water contact angle between 18 and 21 degrees and T-g ranging between -39 and -55 degrees C. Notably, ancillary ligand-supported aluminum complexes as catalysts for HPG polymerization reactions have not been reported to date. The obtained HPG polymers in the presence of the aluminum complex (1) can be used for various biomedical applications. Here, nanocomposite electrospun fibers were fabricated with synthesized HPG polymer. The nanofibers were subjected to cell culture experiments to evaluate cytocompatibility behavior with L929 and MG63 cells. The cytocompatibility studies of HPG polymer and nanocomposite scaffold showed high cell viability and spreading. The study results concluded, synthesized HPG polymers and composite nanofibers can be used for various biomedical applications.
引用
收藏
页码:2377 / 2388
页数:12
相关论文
共 60 条
[1]   Hyperbranched polyglycerols: recent advances in synthesis, biocompatibility and biomedical applications [J].
Abbina, Srinivas ;
Vappala, Sreeparna ;
Kumar, Prashant ;
Siren, Erika M. J. ;
La, Chanel C. ;
Abbasi, Usama ;
Brooks, Donald E. ;
Kizhakkedathu, Jayachandran N. .
JOURNAL OF MATERIALS CHEMISTRY B, 2017, 5 (47) :9249-9277
[2]   Nonionic Surfactant Properties of Amphiphilic Hyperbranched Polyglycerols [J].
Andrade, Brenda ;
Knewstub, Samuel N. ;
Harris, Keith ;
Tucker, Christopher J. ;
Katz, Joshua S. ;
Zimmerman, Steven C. .
LANGMUIR, 2020, 36 (34) :10103-10109
[3]   Bis(8-quinolinolato)aluminum ethyl complexes: Iso-Selective Initiators for rac-Lactide Polymerization [J].
Bakewell, Clare ;
Platel, Rachel H. ;
Cary, Samantha K. ;
Hubbard, Steven M. ;
Roaf, Joshua M. ;
Levine, Alex C. ;
White, Andrew J. P. ;
Long, Nicholas J. ;
Haaf, Michael ;
Williams, Charlotte K. .
ORGANOMETALLICS, 2012, 31 (13) :4729-4736
[4]   Surface-Grafted Hyperbranched Polyglycerol Coating: Varying Extents of Fouling Resistance across a Range of Proteins and Cells [J].
Burzava, Anouck L. S. ;
Jasieniak, Marek ;
Cockshell, Michaelia P. ;
Voelcker, Nicolas H. ;
Bonder, Claudine S. ;
Griesser, Hans J. ;
Moore, Eli .
ACS APPLIED BIO MATERIALS, 2020, 3 (06) :3718-3730
[5]   Surface-functionalizable membranes of polycaprolactone-click-hyperbranched polyglycerol copolymers from combined atom transfer radical polymerization, ring-opening polymerization and click chemistry [J].
Cai, Tao ;
Li, Min ;
Neoh, Koon-Gee ;
Kang, En-Tang .
JOURNAL OF MATERIALS CHEMISTRY B, 2013, 1 (09) :1304-1315
[6]   Dendritic Polyglycerols for Biomedical Applications [J].
Calderon, Marcelo ;
Quadir, Mohiuddin Abdul ;
Sharma, Sunil Kumar ;
Haag, Rainer .
ADVANCED MATERIALS, 2010, 22 (02) :190-218
[7]   Volume Overlap Variation within Hyperbranched Polymer Brushes Resolves Topology Effects against Protein Fouling [J].
Chen, Li ;
He, Yang ;
Xing, Songlin ;
Jiang, Peng ;
Zhao, Yiping .
BIOMACROMOLECULES, 2022, :4924-4933
[8]   A Water-Processable and Bioactive Multivalent Graphene Nanoink for Highly Flexible Bioelectronic Films and Nanofibers [J].
Cheng, Chong ;
Zhang, Jianguang ;
Li, Shuang ;
Xia, Yi ;
Nie, Chuanxiong ;
Shi, Zhenqiang ;
Cuellar-Camacho, Jose Luis ;
Ma, Nan ;
Haag, Rainer .
ADVANCED MATERIALS, 2018, 30 (05)
[9]   Synthesis of hyperbranched polyglycerols using ascorbic acid as an activator [J].
Dadkhah, Mehdi ;
Shamlooei, Hamidreza ;
Mohammadifar, Ehsan ;
Adeli, Mohsen .
RSC ADVANCES, 2018, 8 (01) :217-221
[10]   The size-dependent efficacy and biocompatibility of hyperbranched polyglycerol in peritoneal dialysis [J].
Du, Caigan ;
Mendelson, Asher A. ;
Guan, Qiunong ;
Chapanian, Rafi ;
Chafeeva, Irina ;
da Roza, Gerald ;
Kizhakkedathu, Jayachandran N. .
BIOMATERIALS, 2014, 35 (05) :1378-1389