On the Caputo-Hadamard fractional IVP with variable order using the upper-lower solutions technique

被引:3
作者
Bouazza, Zoubida [1 ]
Souhila, Sabit [2 ]
Etemad, Sina [3 ]
Souid, Mohammed Said [4 ]
Akguel, Ali [5 ,6 ]
Rezapour, Shahram [3 ,7 ]
De la Sen, Manuel [8 ]
机构
[1] Univ Tiaret, Dept Informat, Tiaret, Algeria
[2] Univ Tiaret, Dept Math, Lab Mat & Struct, Tiaret, Algeria
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[4] Univ Tiaret, Dept Econ Sci, Tiaret, Algeria
[5] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkiye
[6] Near East Univ, Math Res Ctr, Dept Math, Mersin 10, TR-99138 Nicosia, North Cyprus, Cyprus
[7] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[8] Univ Basque Country, Fac Sci & Technol, Inst Res & Dev Proc, Dept Elect & Elect, Leioa 48940, Bizkaia, Spain
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 03期
关键词
fractional variable order; Caputo-Hadamard fractional derivative; upper-lower solutions; existence results; DIFFERENTIAL-EQUATIONS; MODEL;
D O I
10.3934/math.2023276
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the existence of solutions for Caputo-Hadamard fractional nonlinear differential equations of variable order (CHFDEVO). We obtain some needed conditions for this purpose by providing an auxiliary constant order system of the given CHFDEVO. In other words, with the help of piece-wise constant order functions on some continuous subintervals of a partition, we convert the main variable order initial value problem (IVP) to a constant order IVP of the Caputo-Hadamard differential equations. By calculating and obtaining equivalent solutions in the form of a Hadamard integral equation, our results are established with the help of the upper-lower-solutions method. Finally, a numerical example is presented to express the validity of our results.
引用
收藏
页码:5484 / 5501
页数:18
相关论文
共 50 条
  • [1] Abdo, 2020, J MATH ANAL MODEL, V1, P33, DOI [10.48185/JMAM.V1I1.2, DOI 10.48185/JMAM.V1I1.2]
  • [2] Existence of positive solutions for weighted fractional order differential equations
    Abdo, Mohammed S.
    Abdeljawad, Thabet
    Ali, Saeed M.
    Shah, Kamal
    Jarad, Fahd
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 141
  • [3] Local and Global Existence and Uniqueness of Solution for Class of Fuzzy Fractional Functional Evolution Equation
    Abuasbeh, Kinda
    Shafqat, Ramsha
    Niazi, Azmat Ullah Khan
    Awadalla, Muath
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [4] Nonlocal fuzzy fractional stochastic evolution equations with fractional Brownian motion of order (1,2)
    Abuasbeh, Kinda
    Shafqat, Ramsha
    Niazi, Azmat Ullah Khan
    Awadalla, Muath
    [J]. AIMS MATHEMATICS, 2022, 7 (10): : 19344 - 19358
  • [5] Local and Global Existence and Uniqueness of Solution for Time-Fractional Fuzzy Navier-Stokes Equations
    Abuasbeh, Kinda
    Shafqat, Ramsha
    Niazi, Azmat Ullah Khan
    Awadalla, Muath
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [6] Fractional Integral Inequalities via Atangana-Baleanu Operators for Convex and Concave Functions
    Akdemir, Ahmet Ocak
    Karaoglan, Ali
    Ragusa, Maria Alessandra
    Set, Erhan
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [7] Caputo-Hadamard Fractional Derivatives of Variable Order
    Almeida, Ricardo
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (01) : 1 - 19
  • [8] Computing Hadamard type operators of variable fractional order
    Almeida, Ricardo
    Torres, Delfim F. M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 74 - 88
  • [9] UNIQUENESS OF SOLUTIONS TO INITIAL VALUE PROBLEM OF FRACTIONAL DIFFERENTIAL EQUATIONS OF VARIABLE-ORDER
    An, Jiahui
    Chen, Pengyu
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2019, 28 (03): : 607 - 623
  • [10] Stability of a time fractional advection-diffusion system
    Arfaoui, Hassen
    Ben Makhlouf, Abdellatif
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 157