Machine Learning for Optical Scanning Probe Nanoscopy

被引:19
作者
Chen, Xinzhong [1 ]
Xu, Suheng [2 ]
Shabani, Sara [2 ]
Zhao, Yueqi [3 ]
Fu, Matthew [2 ]
Millis, Andrew J. [2 ]
Fogler, Michael M. [3 ]
Pasupathy, Abhay N. [2 ]
Liu, Mengkun [1 ,4 ]
Basov, D. N. [2 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[2] Columbia Univ, Dept Phys, New York, NY 10027 USA
[3] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[4] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
关键词
artificial intelligence; machine learning; scanning near-field microscopy; scattering-type scanning near-field optical microscopy; NEAR-FIELD MICROSCOPY; PHASE-TRANSITIONS; NANO-SPECTROSCOPY; ANALYTICAL-MODEL; FIZEAU DRAG; POLARITONS; SCATTERING; ULTRAFAST; PLASMONS; LIGHT;
D O I
10.1002/adma.202109171
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ability to perform nanometer-scale optical imaging and spectroscopy is key to deciphering the low-energy effects in quantum materials, as well as vibrational fingerprints in planetary and extraterrestrial particles, catalytic substances, and aqueous biological samples. These tasks can be accomplished by the scattering-type scanning near-field optical microscopy (s-SNOM) technique that has recently spread to many research fields and enabled notable discoveries. Herein, it is shown that the s-SNOM, together with scanning probe research in general, can benefit in many ways from artificial-intelligence (AI) and machine-learning (ML) algorithms. Augmented with AI- and ML-enhanced data acquisition and analysis, scanning probe optical nanoscopy is poised to become more efficient, accurate, and intelligent.
引用
收藏
页数:15
相关论文
共 218 条
[1]   Phase diagram study of a two-dimensional frustrated antiferromagnet via unsupervised machine learning [J].
Acevedo, S. ;
Arlego, M. ;
Lamas, C. A. .
PHYSICAL REVIEW B, 2021, 103 (13)
[2]   Hyperspectral time-domain terahertz nanoimaging [J].
Aghamiri, Neda Alsadat ;
Huth, Florian ;
Huber, Andreas J. ;
Fali, Alireza ;
Hillenbrand, Rainer ;
Abate, Yohannes .
OPTICS EXPRESS, 2019, 27 (17) :24231-24242
[3]   Substrate-enhanced infrared near-field spectroscopy [J].
Aizpurua, Javier ;
Taubner, Thomas ;
Javier Garcia de Abajo, F. ;
Brehm, Markus ;
Hillenbrand, Rainer .
OPTICS EXPRESS, 2008, 16 (03) :1529-1545
[4]  
Albertsson K., 2018, ARXIV180702876
[5]   Automated tip functionalization via machine learning in scanning probe microscopy [J].
Alldritt, Benjamin ;
Urtev, Fedor ;
Oinonen, Niko ;
Aapro, Markus ;
Kannala, Juho ;
Liljeroth, Peter ;
Foster, Adam S. .
COMPUTER PHYSICS COMMUNICATIONS, 2022, 273
[6]   Automated structure discovery in atomic force microscopy [J].
Alldritt, Benjamin ;
Hapala, Prokop ;
Oinonena, Niko ;
Urtev, Fedor ;
Krejci, Ondrej ;
Canova, Filippo Federici ;
Kannala, Juho ;
Schulz, Fabian ;
Liljeroth, Peter ;
Foster, Adam S. .
SCIENCE ADVANCES, 2020, 6 (09)
[7]   Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms [J].
AlQuraishi, Mohammed ;
Sorger, Peter K. .
NATURE METHODS, 2021, 18 (10) :1169-1180
[8]   A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design [J].
An, Sensong ;
Fowler, Clayton ;
Zheng, Bowen ;
Shalaginov, Mikhail Y. ;
Tang, Hong ;
Li, Hang ;
Zhou, Li ;
Ding, Jun ;
Agarwal, Anuradha Murthy ;
Rivero-Baleine, Clara ;
Richardson, Kathleen A. ;
Gu, Tian ;
Hu, Juejun ;
Zhang, Hualiang .
ACS PHOTONICS, 2019, 6 (12) :3196-3207
[9]  
[Anonymous], 2016, Physical Review B, DOI [DOI 10.1103/PHYSREVB.94.195105, 10.1103/PhysRevB.94.195105]
[10]   Quasiparticle Interference, Quasiparticle Interactions, and the Origin of the Charge Density Wave in 2H-NbSe2 [J].
Arguello, C. J. ;
Rosenthal, E. P. ;
Andrade, E. F. ;
Jin, W. ;
Yeh, P. C. ;
Zaki, N. ;
Jia, S. ;
Cava, R. J. ;
Fernandes, R. M. ;
Millis, A. J. ;
Valla, T. ;
Osgood, R. M., Jr. ;
Pasupathy, A. N. .
PHYSICAL REVIEW LETTERS, 2015, 114 (03)