Characterizing the stress relaxation behavior of unidirectional prepreg through a parallel fractional-order viscoelastic model

被引:0
作者
Liu, Jun [1 ,2 ,3 ]
Li, Zhefu [3 ]
Yue, Guangquan [1 ,2 ]
Liu, Weiping [1 ,2 ,3 ]
Cheng, Zitong [4 ]
机构
[1] Donghua Univ, Ctr Civil Aviat Composites, Shanghai High Performance Fibers & Composites Ctr, Prov Minist Joint, Shanghai 201620, Peoples R China
[2] Donghua Univ, Coll Mat Sci & Engn, Ctr Civil Aviat Composites, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[3] Shanghai Aircraft Mfg Co Ltd, Composites Ctr COMAC, Shanghai 201324, Peoples R China
[4] Tianyuan Coll, Hangzhou 311100, Peoples R China
基金
国家重点研发计划;
关键词
unidirectional prepreg; stress relaxation behavior; viscoelastic model; fractional-order model; FIBER WAVINESS; PARAMETERS;
D O I
10.1088/2053-1591/ad2f7b
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the hot-stamp molding and hot diaphragm forming processes of composites, pressure significantly influences shaping quality. This study establishes a novel parallel fractional-order viscoelastic (PFOV) model with two Scott-Blair elements, achieving remarkable accuracy (R2 = 0.99) with fewer parameters. Unlike traditional models, it incorporates the force history of prepreg, providing a more precise representation of its mechanical response. Comparative analysis against established models underscores its superior ability to capture intricate stress relaxation behaviors. Notably, the model's reduced parameters enhance its physical interpretability, offering a significant advantage in simulating and predicting prepreg material compression behavior for diverse manufacturing processes.
引用
收藏
页数:10
相关论文
共 23 条
  • [1] Effects of Processing Parameters on the Forming Quality of C-Shaped Thermosetting Composite Laminates in Hot Diaphragm Forming Process
    Bian, X. X.
    Gu, Y. Z.
    Sun, J.
    Li, M.
    Liu, W. P.
    Zhang, Z. G.
    [J]. APPLIED COMPOSITE MATERIALS, 2013, 20 (05) : 927 - 945
  • [2] BLAIR G W S, 1974, Journal of Texture Studies, V5, P3, DOI 10.1111/j.1745-4603.1974.tb01083.x
  • [3] Brillant M., 2011, Master's Thesis
  • [4] Prepreg tack: A review of mechanisms, measurement, and manufacturing implication
    Budelmann, Dennis
    Schmidt, Carsten
    Meiners, Dieter
    [J]. POLYMER COMPOSITES, 2020, 41 (09) : 3440 - 3458
  • [5] On the influence of the initial ramp for a correct definition of the parameters of fractional viscoelastic materials
    Di Paola, Mario
    Fiore, Vincenzo
    Pinnola, Francesco Paolo
    Valenza, Antonino
    [J]. MECHANICS OF MATERIALS, 2014, 69 (01) : 63 - 70
  • [6] Using fractional derivatives for improved viscoelastic modeling of textile composites. Part II: Fabric under different temperatures
    Faal, R. T.
    Sourki, R.
    Crawford, B.
    Vaziri, R.
    Milani, A. S.
    [J]. COMPOSITE STRUCTURES, 2020, 248
  • [7] A New Approach for Determination of Gel Time of a Glass/Epoxy Prepreg
    Hayaty, Mehran
    Beheshty, Mohammad Hosain
    Esfandeh, Masoud
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 120 (03) : 1483 - 1489
  • [8] The effect of fiber waviness on the fatigue life of CFRP materials
    Hoerrmann, Susanne
    Adumitroaie, Adi
    Viechtbauer, Christoph
    Schagerl, Martin
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2016, 90 : 139 - 147
  • [9] A method for the direct measurement of the fibre bed compaction curve of composite prepregs
    Hubert, P
    Poursartip, A
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2001, 32 (02) : 179 - 187
  • [10] Effect of gaps/overlaps induced waviness on the mechanical properties of automated fiber placement (AFP)-manufactured composite laminate
    Ju, Xiangwen
    Xiao, Jun
    Wang, Dongli
    Zhao, Cong
    Gao, Tiancheng
    Wang, Xianfeng
    [J]. MATERIALS RESEARCH EXPRESS, 2022, 9 (04)