Dipolar Chemical Bridge Induced CsPbI3 Perovskite Solar Cells with 21.86 % Efficiency

被引:73
作者
Qiu, Junming [1 ]
Mei, Xinyi [1 ]
Zhang, Mingxu [1 ]
Wang, Guoliang [1 ]
Zou, Shengwen [2 ]
Wen, Long [3 ]
Huang, Jianmei [2 ]
Hua, Yong [3 ]
Zhang, Xiaoliang [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Energy & Power Engn, Beijing 100191, Peoples R China
[3] Yunnan Univ, Sch Mat & Energy, Yunnan Key Lab Micro Nano Mat & Technol, Kunming 650091, Peoples R China
基金
中国国家自然科学基金;
关键词
perovskite; CsPbI3; dipolar chemical bridge; solar cell; photovoltaic performance;
D O I
10.1002/anie.202401751
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CsPbI3 perovskite receives tremendous attention for photovoltaic applications due to its ideal band gap and good thermal stability. However, CsPbI3 perovskite solar cells (PSCs) significantly suffer from photovoltage deficits because of serious interfacial energy losses within the PSCs, which to a large extent affects the photovoltaic performance of PSCs. Herein, a dipolar chemical bridge (DCB) is constructed between the perovskite and TiO2 layers to lower interfacial energy losses and thus improve the charge extraction of PSCs. The results reveal that the DCB could form a beneficial interfacial dipole between the perovskite and TiO2 layers, which could optimize the interfacial energetics of perovskite/TiO2 layers and thus improve the energy level alignment within the PSCs. Meanwhile, the constructed DCB could also simultaneously passivate the surface defects of perovskite and TiO2 layers, greatly lowering interfacial recombination. Consequently, the photovoltage deficit of CsPbI3 PSCs is largely reduced, leading to a record efficiency of 21.86 % being realized. Meanwhile, the operation stability of PSCs is also largely improved due to the high-quality perovskite films with released interfacial tensile strain being obtained after forming the DCB within the PSCs.
引用
收藏
页数:11
相关论文
共 36 条
[1]   Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells [J].
Ahmed, Yameen ;
Feng, Xiangxiang ;
Gao, Yuanji ;
Ding, Yang ;
Long, Caoyu ;
Haider, Mustafa ;
Li, Hengyue ;
Li, Zhuan ;
Huang, Shicheng ;
Saidaminov, Makhsud I. ;
Yang, Junliang .
ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (06)
[2]   Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications [J].
Cheng, Yuanhang ;
Ding, Liming .
SUSMAT, 2021, 1 (03) :324-344
[3]   Interfacial Engineering for Improved Stability of Flexible Perovskite Solar Cells [J].
Dou, Jie ;
Chen, Qi .
ENERGY MATERIAL ADVANCES, 2022, 2022
[4]   Stability challenges for the commercialization of perovskite-silicon tandem solar cells [J].
Duan, Leiping ;
Walter, Daniel ;
Chang, Nathan ;
Bullock, James ;
Kang, Di ;
Phang, Sieu Pheng ;
Weber, Klaus ;
White, Thomas ;
Macdonald, Daniel ;
Catchpole, Kylie ;
Shen, Heping .
NATURE REVIEWS MATERIALS, 2023, 8 (04) :261-281
[5]   Buried Interface Modification in Perovskite Solar Cells: A Materials Perspective [J].
Gao, Zhi-Wen ;
Wang, Yong ;
Choy, Wallace C. H. .
ADVANCED ENERGY MATERIALS, 2022, 12 (20)
[6]   The high open-circuit voltage of perovskite solar cells: a review [J].
Guo, Zhanglin ;
Jena, Ajay Kumar ;
Kim, Gyu Min ;
Miyasaka, Tsutomu .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (08) :3171-3222
[7]   24.8%-efficient planar perovskite solar cells via ligand-engineered TiO2 deposition [J].
Huang, Hao ;
Cui, Peng ;
Chen, Yan ;
Yan, Luyao ;
Yue, Xiaopeng ;
Qu, Shujie ;
Wang, Xinxin ;
Du, Shuxian ;
Liu, Benyu ;
Zhang, Qiang ;
Lan, Zhineng ;
Yang, Yingying ;
Ji, Jun ;
Zhao, Xing ;
Li, Yingfeng ;
Wang, Xin ;
Ding, Xunlei ;
Li, Meicheng .
JOULE, 2022, 6 (09) :2186-2202
[8]   Molecular engineering of contact interfaces for high-performance perovskite solar cells [J].
Isikgor, Furkan H. ;
Zhumagali, Shynggys ;
Merino, Luis V. T. ;
De Bastiani, Michele ;
McCulloch, Iain ;
De Wolf, Stefaan .
NATURE REVIEWS MATERIALS, 2023, 8 (02) :89-108
[9]   Inhibiting lattice distortion of CsPbI3 perovskite quantum dots for solar cells with efficiency over 16.6% [J].
Jia, Donglin ;
Chen, Jingxuan ;
Zhuang, Rongshan ;
Hua, Yong ;
Zhang, Xiaoliang .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (10) :4201-4212
[10]   Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5% [J].
Jia, Donglin ;
Chen, Jingxuan ;
Qiu, Junming ;
Ma, Huili ;
Yu, Mei ;
Liu, Jianhua ;
Zhang, Xiaoliang .
JOULE, 2022, 6 (07) :1632-1653