Quantum simulation in Fock-state lattices

被引:3
作者
Yuan, Jiale [1 ,2 ]
Cai, Han [3 ]
Wang, Da-Wei [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Univ, Sch Phys, Zhejiang Prov Key Lab Quantum Technol & Device, Hangzhou, Peoples R China
[2] Zhejiang Univ, State Key Lab Extreme Photon & Instrumentat, Hangzhou, Peoples R China
[3] Zhejiang Univ, Coll Opt Sci & Engn, Hangzhou, Peoples R China
[4] Zhejiang Univ, Sch Phys, Haina 8th Bldg,Zijingang Campus, Hangzhou 310058, Zhejiang, Peoples R China
来源
ADVANCES IN PHYSICS-X | 2024年 / 9卷 / 01期
基金
中国国家自然科学基金;
关键词
Quantum simulation; fock-state lattice; jaynes-Cummings model; topological physics; landau level; ELECTRONIC-PROPERTIES; PHASE; REALIZATION; INSULATOR; GRAPHENE; CAVITY; SOLITONS; PHYSICS; MODEL;
D O I
10.1080/23746149.2024.2325611
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fock-state lattices (FSLs) consist of the Fock states of photons and atoms, establishing a quantum photonic platform for simulating condensed matter physics. Remarkably, various topological phenomena, such as topological edge states, strain-induced Landau levels, the valley Hall effect, and the quantum anomalous Hall effect, are intricately linked to the quantum properties of light. Recent advancements in state-of-the-art superconducting circuits have enabled the observation of these topological quantum photonic phenomena. With scalable dimensions and flexible structure engineering, FSLs offer a novel tool for investigating high-dimensional topological physics and devising innovative devices for quantum information processing. This review delves into the latest theoretical and experimental developments in this emerging field, situated at the intersection of quantum optics, topological physics, and quantum information. {GRAPHIACAL ABSTRACT}
引用
收藏
页数:22
相关论文
共 91 条
[1]   Atomic Schrodinger cat states [J].
Agarwal, GS ;
Puri, RR ;
Singh, RP .
PHYSICAL REVIEW A, 1997, 56 (03) :2249-2254
[2]   Nonreciprocal lasing in topological cavities of arbitrary geometries [J].
Bahari, Babak ;
Ndao, Abdoulaye ;
Vallini, Felipe ;
El Amili, Abdelkrim ;
Fainman, Yeshaiahu ;
Kante, Boubacar .
SCIENCE, 2017, 358 (6363) :636-639
[3]   Topological insulator laser: Experiments [J].
Bandres, Miguel A. ;
Wittek, Steffen ;
Harari, Gal ;
Parto, Midya ;
Ren, Jinhan ;
Segev, Mordechai ;
Christodoulides, Demetrios N. ;
Khajavikhan, Mercedeh .
SCIENCE, 2018, 359 (6381)
[4]   Bloch oscillations of ultracold atoms:: A tool for a metrological determination of h/mRb -: art. no. 253001 [J].
Battesti, R ;
Cladé, P ;
Guellati-Khélifa, S ;
Schwob, C ;
Grémaud, B ;
Nez, F ;
Julien, L ;
Biraben, F .
PHYSICAL REVIEW LETTERS, 2004, 92 (25) :253001-1
[5]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[7]   Mapping topological order in coordinate space [J].
Bianco, Raffaello ;
Resta, Raffaele .
PHYSICAL REVIEW B, 2011, 84 (24)
[8]   Nodal-line transition induced Landau gap in strained lattices [J].
Cai, Han ;
Ma, Shaojie ;
Wang, Da-Wei .
PHYSICAL REVIEW B, 2023, 108 (08)
[9]   Topological phases of quantized light [J].
Cai, Han ;
Wang, Da-Wei .
NATIONAL SCIENCE REVIEW, 2021, 8 (01)
[10]   Experimental Observation of Momentum-Space Chiral Edge Currents in Room-Temperature Atoms [J].
Cai, Han ;
Liu, Jinhong ;
Wu, Jinze ;
He, Yanyan ;
Zhu, Shi-Yao ;
Zhang, Jun-Xiang ;
Wang, Da-Wei .
PHYSICAL REVIEW LETTERS, 2019, 122 (02)