High-fidelity state transfer via quantum walks from delocalized states

被引:0
作者
Engster, Joao P. [1 ]
Vieira, Rafael [2 ]
Duzzioni, Eduardo I. [1 ]
Amorim, Edgard P. M. [3 ]
机构
[1] Univ Fed Santa Catarina, Dept Fis, BR-88040900 Florianoplis, SC, Brazil
[2] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil
[3] Univ Estado Santa Catarina, Dept Fis, BR-89219710 Joinville, SC, Brazil
关键词
Quantum walks; State transfer; Delocalized states; Quantum circuits; SPIN CHAIN; ENTANGLEMENT; TRANSPORT;
D O I
10.1007/s11128-024-04308-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the state transfer through quantum walks placed on a bounded one-dimensional path. We first consider continuous-time quantum walks from a Gaussian state. We find such a state when superposing centered on the starting and antipodal positions preserves a high fidelity for a long time and when sent on large circular graphs. Furthermore, it spreads with a null group velocity. We also explore discrete-time quantum walks to evaluate the qubit fidelity throughout the walk. In this case, the initial state is a product of states between a qubit and a Gaussian superposition of position states. Then, we add two sigma x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _x$$\end{document} gates to confine this delocalized qubit. We also find that this bounded system dynamically enables periodic recovery of the initial separable state. We outline some applications of our results in dynamic graphs and propose quantum circuits to implement them based on the available literature.
引用
收藏
页数:26
相关论文
共 64 条
  • [1] Quantum walk on the line: Entanglement and non-local initial conditions (vol 73, pg 042302, 2006)
    Abal, G.
    Siri, R.
    Romanelli, A.
    Donangelo, R.
    [J]. PHYSICAL REVIEW A, 2006, 73 (06):
  • [2] Quantum walk on the line: Entanglement and nonlocal initial conditions
    Abal, G
    Siri, R
    Romanelli, A
    Donangelo, R
    [J]. PHYSICAL REVIEW A, 2006, 73 (04): : 1 - 9
  • [3] Implementation of quantum walks on IBM quantum computers
    Acasiete, F.
    Agostini, F. P.
    Moqadam, J. Khatibi
    Portugal, R.
    [J]. QUANTUM INFORMATION PROCESSING, 2020, 19 (12)
  • [4] Aharonov D., 2001, P 33 STOC
  • [5] QUANTUM RANDOM-WALKS
    AHARONOV, Y
    DAVIDOVICH, L
    ZAGURY, N
    [J]. PHYSICAL REVIEW A, 1993, 48 (02): : 1687 - 1690
  • [6] Ahmadi A, 2003, QUANTUM INFORM COMPU, V3, P611
  • [7] Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems
    Banchi, L.
    Apollaro, T. J. G.
    Cuccoli, A.
    Vaia, R.
    Verrucchi, P.
    [J]. PHYSICAL REVIEW A, 2010, 82 (05):
  • [8] Barr KE, 2014, QUANTUM INF COMPUT, V14, P417
  • [9] Ben Slimen I, 2020, Arxiv, DOI arXiv:2005.02447
  • [10] Concentrating partial entanglement by local operations
    Bennett, CH
    Bernstein, HJ
    Popescu, S
    Schumacher, B
    [J]. PHYSICAL REVIEW A, 1996, 53 (04): : 2046 - 2052