Effects of dietary phytosterol on growth, lipid homeostasis and lipidomics of largemouth bass (Micropterus salmoides)

被引:0
|
作者
Jiang, Xiaoxia [1 ,2 ]
Sun, Fenggang [2 ]
Pan, Zhongchao [2 ]
Xu, Jia [3 ]
Xie, Shiwei [1 ,4 ,5 ]
机构
[1] Guangdong Ocean Univ, Fisheries Coll, Lab Aquat Anim Nutr & Feed, Zhanjiang, Peoples R China
[2] Guangdong Wei Lai Biotechnol Co Ltd, Guangzhou 510000, Peoples R China
[3] Guangxi Acad Marine Sci, Guangxi Acad Sci, Guangxi Key Lab Marine Environm Sci, Nanning, Peoples R China
[4] Minist Agr, Key Lab Aquat Livestock & Poultry Feed Sci & Techn, Zhanjiang, Peoples R China
[5] Aquat Anim Precis Nutr & High Efficiency Feed Engn, Zhanjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Phytosterol; Lipid metabolism; Cholesterol metabolism; Lipidomics; Fish; BREAM SPARUS-AURATA; SOY SAPONINS;
D O I
10.1016/j.aqrep.2024.101959
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Little information is available on how exogenous phytosterol (PS) affect the growth performance and lipid homeostasis in fish. In the present study, an 8-week feeding trial were used to investigate the effects of PS on growth performance, serum biochemical indexes, cholesterol (CHO) metabolism and lipidomics of juvenile largemouth bass (Micropterus salmoides). The treatment diets (PS1-PS5) were formulated with supplementation of 0.01 %, 0.02 %, 0.03 %, 0.04 %, and 0.05 % PS on basis of the control diet (C, crude protein 48.39 %, crude lipid 11.65 %). Results showed that the final body weight and specific growth rate of largemouth bass increased as the levels of PS addition increased, reaching stability in the PS3 group. The concentration of high-density lipoprotein cholesterol was elevated and low-density lipoprotein cholesterol was reduced in serum were elevated following PS intervention at 0.03 %. PS treatment reduced the expression of genes associated with endogenous CHO anabolism, while increasing CHO catabolism and suppressing the corresponding negative transcriptional regulators. Lipidomics results showed that the composition patterns of lipid classes between the C and PS4 groups were similar. 7 of triglyceride (TG), 5 of phosphatidylcholine (PC), 2 of PE (phosphatidylethanolamine) and 1 of DG (diglyceride) lipid moleculars were identified as the potential lipid biomarkers in PS4 group. Furthermore, PS4 treatment enriched the pathway of 'membrane component' and 'polyunsaturated fatty acid'. In conclusion, lipid and cholesterol metabolism were altered by the PS treatment, and the appropriate PS addition level was found to be 0.03 % based on the growth performance of the largemouth bass.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Effects of dietary nucleotides on growth performance, immune response, intestinal morphology and disease resistance of juvenile largemouth bass, Micropterus salmoides
    Chen, Xiao-chun
    Huang, Xiao-quan
    Tang, Yi-wen
    Zhang, Lei
    Lin, Feng
    JOURNAL OF FISH BIOLOGY, 2022, 101 (01) : 204 - 212
  • [22] Dietary butylated hydroxytoluene improves lipid metabolism, antioxidant and anti-apoptotic response of largemouth bass (Micropterus salmoides)
    Yu, L. L.
    Yu, H. H.
    Liang, X. F.
    Li, N.
    Wang, X.
    Li, F. H.
    Wu, X. F.
    Zheng, Y. H.
    Xue, M.
    Liang, X. F.
    FISH & SHELLFISH IMMUNOLOGY, 2018, 72 : 220 - 229
  • [23] Latitudinal variation in the geometric morphology of the largemouth bass, Micropterus salmoides
    Hall, Elijah S.
    Martin, Benjamin E.
    Brubaker, Kristen
    Grant, Christopher J.
    MARINE AND FRESHWATER RESEARCH, 2018, 69 (09) : 1480 - 1485
  • [24] Survival of Foul-Hooked Largemouth Bass (Micropterus salmoides)
    Pope, Kevin L.
    Wilde, Gene R.
    JOURNAL OF FRESHWATER ECOLOGY, 2010, 25 (01) : 135 - 139
  • [25] Oxidation of energy substrates in tissues of largemouth bass (Micropterus salmoides)
    Xinyu Li
    Sichao Shixuan Zheng
    Fei Jia
    Chuanpeng Song
    Guoyao Zhou
    Amino Acids, 2020, 52 : 1017 - 1032
  • [26] Effects of Lactobacillus plantarum and Bacillus subtilis on growth, immunity and intestinal flora of largemouth bass(Micropterus salmoides)
    Jin, Wangyang
    Jiang, Lihua
    Hu, Siling
    Zhu, Aiyi
    AQUACULTURE, 2024, 583
  • [27] Different responses to glucose overload between two strains of largemouth bass (Micropterus salmoides)
    Lei, Caixia
    Xie, Yujing
    Song, Hongmei
    Jiang, Peng
    Du, Jinxing
    Li, Shengjie
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [28] Effects of dietary protein intake on the oxidation of glutamate, glutamine, glucose and palmitate in tissues of largemouth bass (Micropterus salmoides)
    Li, Xinyu
    Zheng, Shixuan
    Han, Tao
    Song, Fei
    Wu, Guoyao
    AMINO ACIDS, 2020, 52 (11-12) : 1491 - 1503
  • [29] Effects of antimicrobial peptides on the growth performance, antioxidant and intestinal function in juvenile largemouth bass, Micropterus salmoides
    Li, Shuai
    Chi, ShuYan
    Cheng, Xiangtang
    Wu, Chenglong
    Xu, Qiaoqing
    Qu, Peng
    Gao, Weihua
    Liu, Yongsheng
    AQUACULTURE REPORTS, 2020, 16
  • [30] Maternally transferred mercury in wild largemouth bass, Micropterus salmoides
    Sackett, Dana K.
    Aday, D. Derek
    Rice, James A.
    Cope, W. Gregory
    ENVIRONMENTAL POLLUTION, 2013, 178 : 493 - 497