Effects of dietary phytosterol on growth, lipid homeostasis and lipidomics of largemouth bass (Micropterus salmoides)

被引:0
|
作者
Jiang, Xiaoxia [1 ,2 ]
Sun, Fenggang [2 ]
Pan, Zhongchao [2 ]
Xu, Jia [3 ]
Xie, Shiwei [1 ,4 ,5 ]
机构
[1] Guangdong Ocean Univ, Fisheries Coll, Lab Aquat Anim Nutr & Feed, Zhanjiang, Peoples R China
[2] Guangdong Wei Lai Biotechnol Co Ltd, Guangzhou 510000, Peoples R China
[3] Guangxi Acad Marine Sci, Guangxi Acad Sci, Guangxi Key Lab Marine Environm Sci, Nanning, Peoples R China
[4] Minist Agr, Key Lab Aquat Livestock & Poultry Feed Sci & Techn, Zhanjiang, Peoples R China
[5] Aquat Anim Precis Nutr & High Efficiency Feed Engn, Zhanjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Phytosterol; Lipid metabolism; Cholesterol metabolism; Lipidomics; Fish; BREAM SPARUS-AURATA; SOY SAPONINS;
D O I
10.1016/j.aqrep.2024.101959
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Little information is available on how exogenous phytosterol (PS) affect the growth performance and lipid homeostasis in fish. In the present study, an 8-week feeding trial were used to investigate the effects of PS on growth performance, serum biochemical indexes, cholesterol (CHO) metabolism and lipidomics of juvenile largemouth bass (Micropterus salmoides). The treatment diets (PS1-PS5) were formulated with supplementation of 0.01 %, 0.02 %, 0.03 %, 0.04 %, and 0.05 % PS on basis of the control diet (C, crude protein 48.39 %, crude lipid 11.65 %). Results showed that the final body weight and specific growth rate of largemouth bass increased as the levels of PS addition increased, reaching stability in the PS3 group. The concentration of high-density lipoprotein cholesterol was elevated and low-density lipoprotein cholesterol was reduced in serum were elevated following PS intervention at 0.03 %. PS treatment reduced the expression of genes associated with endogenous CHO anabolism, while increasing CHO catabolism and suppressing the corresponding negative transcriptional regulators. Lipidomics results showed that the composition patterns of lipid classes between the C and PS4 groups were similar. 7 of triglyceride (TG), 5 of phosphatidylcholine (PC), 2 of PE (phosphatidylethanolamine) and 1 of DG (diglyceride) lipid moleculars were identified as the potential lipid biomarkers in PS4 group. Furthermore, PS4 treatment enriched the pathway of 'membrane component' and 'polyunsaturated fatty acid'. In conclusion, lipid and cholesterol metabolism were altered by the PS treatment, and the appropriate PS addition level was found to be 0.03 % based on the growth performance of the largemouth bass.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides
    Guo, Jia-ling
    Zhou, Yue-lang
    Zhao, Hang
    Chen, Wen-Yan
    Chen, Yong-Jun
    Lin, Shi-Mei
    AQUACULTURE, 2019, 506 : 394 - 400
  • [2] Dietary lysophospholipids improves growth performance and hepatic lipid metabolism of largemouth bass (Micropterus salmoides)
    Che, Mingxiao
    Lu, Ziye
    Liu, Liang
    Li, Ning
    Ren, Lina
    Chi, Shuyan
    ANIMAL NUTRITION, 2023, 13 : 426 - 434
  • [3] Effects of dietary phospholipids on growth performance, fatty acid composition and lipid metabolism of early juvenile largemouth bass (Micropterus salmoides)
    Wang, Shilin
    Zhang, Yu
    Xie, Ruitao
    Zhang, Nihe
    Zhang, Haitao
    Chen, Naisong
    Li, Songlin
    AQUACULTURE RESEARCH, 2022, 53 (16) : 5628 - 5637
  • [4] Dietary threonine requirement of juvenile largemouth bass, Micropterus salmoides
    Rahman, Mohammad Mizanur
    Li, Xiaoqin
    Sharifuzzaman, S. M.
    He, Ming
    Poolsawat, Lumpan
    Yang, Hang
    Leng, Xiangjun
    AQUACULTURE, 2021, 543
  • [5] Mildronate triggers growth suppression and lipid accumulation in largemouth bass (Micropterus salmoides) through disturbing lipid metabolism
    Wang, Jun-Xian
    Rahimnejad, Samad
    Zhang, Yan-Yu
    Ren, Jiong
    Wang, Jie
    Qiao, Fang
    Zhang, Mei-Ling
    Du, Zhen-Yu
    FISH PHYSIOLOGY AND BIOCHEMISTRY, 2022, 48 (01) : 145 - 159
  • [6] Largemouth Bass Micropterus salmoides (Lacepede, 1802)
    Claussen, Julie E.
    BLACK BASS DIVERSITY: MULTIDISCIPLINARY SCIENCE FOR CONSERVATION, 2015, 82 : 27 - 34
  • [7] Effects of Virgin Microplastics on Growth, Intestinal Morphology and Microbiota on Largemouth Bass (Micropterus salmoides)
    Zhang, Chaonan
    Wang, Qiujie
    Wang, Shaodan
    Pan, Zhengkun
    Sun, Di
    Cheng, Yanbo
    Zou, Jixing
    Xu, Guohuan
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [8] Effects of dietary arginine levels and carbohydrate-to-lipid ratios on mRNA expression of growth-related hormones in largemouth bass, Micropterus salmoides
    Chen, Naisong
    Jin, Lina
    Zhou, Hengyong
    Qiu, Xiaojie
    GENERAL AND COMPARATIVE ENDOCRINOLOGY, 2012, 179 (01) : 121 - 127
  • [9] Effects of different dietary lipids on growth, body composition and lipid metabolism-related enzymes and genes in juvenile largemouth bass, Micropterus salmoides
    Zhang, Wei
    Tan, Beiping
    Liu, Kang
    Dong, Xiaohui
    Yang, Qihui
    Chi, Shuyan
    Liu, Hongyu
    Zhang, Shuang
    Wang, Hualang
    AQUACULTURE NUTRITION, 2019, 25 (06) : 1318 - 1326
  • [10] Mildronate triggers growth suppression and lipid accumulation in largemouth bass (Micropterus salmoides) through disturbing lipid metabolism
    Jun-Xian Wang
    Samad Rahimnejad
    Yan-Yu Zhang
    Jiong Ren
    Jie Wang
    Fang Qiao
    Mei-Ling Zhang
    Zhen-Yu Du
    Fish Physiology and Biochemistry, 2022, 48 : 145 - 159