Non-isotopic transverse tori in Engel manifolds

被引:0
作者
Kegel, Marc [1 ]
机构
[1] Humboldt Univ, Rudower Chaussee 25, D-12489 Berlin, Germany
关键词
Engel manifolds; transverse tori; linking of tori; OVERTWISTED CONTACT STRUCTURES; CLASSIFICATION; EXISTENCE;
D O I
10.4171/RMI/1413
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In every Engel manifold, we construct an infinite family of pairwise nonisotopic transverse tori that are all smoothly isotopic. To distinguish the transverse tori in the family, we introduce a homological invariant of transverse tori that is similar to the self-linking number for transverse knots in contact 3-manifolds. Analogous results are presented for Legendrian tori in even contact 4-manifolds.
引用
收藏
页码:43 / 56
页数:14
相关论文
共 25 条
[1]   Classification of Horizontal Loops in the Standard Engel Space [J].
Adachi, Jiro .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
[2]  
Bennequin D., 1982, Asterisque, V1, P87
[3]   Existence and classification of overtwisted contact structures in all dimensions [J].
Borman, Matthew Strom ;
Eliashberg, Yakov ;
Murphy, Emmy .
ACTA MATHEMATICA, 2015, 215 (02) :281-361
[4]  
Carter Scott., 2004, Encyclopaedia of Mathematical Sciences, V142
[5]   Loose Engel structures [J].
Casals, Roger ;
del Pino, Alvaro ;
Presas, Francisco .
COMPOSITIO MATHEMATICA, 2020, 156 (02) :412-434
[6]   Classification of Engel knots [J].
Casals, Roger ;
del Pino, Alvaro .
MATHEMATISCHE ANNALEN, 2018, 371 (1-2) :391-404
[7]   Existence h-principle for Engel structures [J].
Casals, Roger ;
Luis Perez, Jose ;
del Pino, Alvaro ;
Presas, Francisco .
INVENTIONES MATHEMATICAE, 2017, 210 (02) :417-451
[8]   The Engel-Lutz twist and overtwisted Engel structures [J].
del Pino, Alvaro ;
Vogel, Thomas .
GEOMETRY & TOPOLOGY, 2020, 24 (05) :2471-2546
[9]   Flexibility for tangent and transverse immersions in Engel manifolds [J].
del Pino, Alvaro ;
Presas, Francisco .
REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (01) :215-238
[10]   CLASSIFICATION OF OVERTWISTED CONTACT STRUCTURES ON 3-MANIFOLDS [J].
ELIASHBERG, Y .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :623-637